ML18

Задача ML18

Условие задачи

Найти периметр треугольника по заданным координатам вершин [latex]A(x_1,y_1,z_1)[/latex], [latex]B(x_2,y_2,z_2)[/latex] и [latex]C(x_3,y_3,z_3)[/latex].

Входные данные

В одной строке заданы 9 чисел [latex]x_1, x_2, x_3, y_1, y_2, y_3, z_1, z_2, z_3[/latex] — координаты вершин треугольника [latex]ABC[/latex],  значения которых не превышают по модулю [latex]100[/latex].

Выходные данные

Вывести периметр [latex]p[/latex] данного треугольника.

Также условие задачи можно посмотреть здесь.

Тестирование

Входные данные ([latex]x_i, y_j, z_k; i, j, k= 1, 2, 3 [/latex]) Выходные данные
1 2 2 5 1  0 -1 3 5 10 16.0261556346
2 1 4 5 3 6 0 10.5 -2 -1 31.9047289894
3 15 26 13 32 18 56 80 0 -6.2 212.0962807371
4 -13 68 44 99 -100 70 0 2 1 450.5748518262
5 100 9 17 18 29 88 65 -16 0.36 310.4318979186

Реализация

Алгоритм решения

  1. Задан произвольный треугольник [latex]ABC[/latex] с такими координатами вершин: [latex]A(x_1,y_1,z_1)[/latex], [latex]B(x_2,y_2,z_2)[/latex] и [latex]C(x_3,y_3,z_3)[/latex]. Обозначим стороны треугольника [latex] AB, BC, AC[/latex] как [latex]a, b, c[/latex] соответственно.
  2. Очевидно, что для того, чтобы вычислить периметр данного треугольника, нужно найти длины его сторон. Для этого воспользуемся формулой вычисления расстояния между двумя точками в пространстве. Получаем:[latex]a=\sqrt {(x_2-x_1)^2 + (y_2-y_1)^2 + (z_2-z_1)^2}[/latex]; [latex]b= \sqrt {(x_3-x_2)^2 + (y_3-y_2)^2 + (z_3-z_2)^2}[/latex]; [latex]c= \sqrt {(x_3-x_1)^2 + (y_3-y_1)^2 + (z_3-z_1)^2} [/latex].
  3. Зная значения сторон треугольника, вычисляем периметр, используя формулу. Получаем: [latex]p= a + b + c[/latex].

Подробнее о декартовой системе координат можно прочесть здесь.

Для запроса на выполнение следует перейти по ссылке.

 

3 thoughts on “ML18

Добавить комментарий