e-olymp 7239. «Все, Степан! Ти мене дістав!»

Задача

Степан нещодавно відпочивав у Японії і привіз звідти нову жувальну гумку. На першій парі в університеті він поділився гумкою зі своїм товаришем. Дочекавшись моменту, коли лектор повернувся до дошки, на рахунок «три — чотири» хлопці дружньо почали надувати бульбашки. Відомо, що Степан надуває бульбашку до максимально можливого розміру за час $t_1$, після чого бульбашка миттєво лопається, і Степан починає надувати бульбашку заново з тією ж швидкістю. Товариш Степана робить те ж саме за час $t_2$.

Весь цей час викладач настільки захоплений доведенням теореми, що взагалі нічого не чує. І тільки коли обидві бульбашки лопнуть одночасно, викладач почує шум і обернеться. І тоді вже точно студентам попаде на горіхи, а більше усього тому, хто приніс на пару жувальні гумки.

Визначте, скільки часу хлопці можуть насолоджуватись надуванням бульбашок, не замічені викладачем.

Наприклад, якщо $t_1 = 2$, $t_2 = 3$, то буде відбуватись наступне:

Степан надуває бульбашку з моменту часу $t = 0$ до моменту часу $t = 2$, потім бульбашка лопається, і він надуває бульбашку знову — з моменту часу $t = 2$ до моменту часу $t = 4$, а потім ще раз — з моменту часу $t = 4$ до $t = 6$.

Товариш Степана надуває бульбашку з $t = 0$ до $t = 3$ і ще раз з $t = 3$ до $t = 6$.

В момент часу $t = 6$ бульбашки лопаються одночасно в обох студентів, викладач повертається і каже: «Все, Степан! Ти мене дістав!».

Формат вхідних даних

Перший рядок вхідного файлу містить два цілих числа $t_1, t_2 (1 \leqslant t_1, t_2 \leqslant 10^9).$

Формат вихідних даних

Вихідний файл повинен містити одне ціле число — час, протягом якого Степан з товаришем можуть насолоджуватись надуванням бульбашок.

Тести

Вхідні дані Вихідні дані
1 2 3 6
2 1 16 16
3 10 10 10
4 100000000 150000000 300000000
5 17 41 697

Код

Розв’язання

    Задача зводиться до пошуку НСК (найменше спільне кратне). Формула для знаходження $НСК$: $НСК(a, b)={{a\cdot b}\over{НСД(a, b)}}$, де НСД — найбільший спільний дільник. Для його знаходження скористуємось алгоритмом Евкліда, У даному розв`язку реалізованим за допомогою рекурсії у функції $nod$.

Посилання

Related Images:

e-olymp 1602. НОК двух натуральных чисел

Задача

Найдите $НОК$ (наименьшее общее кратное) двух натуральных чисел.

Входные данные

Два натуральных числа $a$ и $b$ $(a, b < 2 \cdot 10^9)$.

Выходные данные

Вывести $НОК$ чисел $a$ и $b$.

Тесты

Входные данные Выходные данные
1 42 24 168
2 32 14 224
3 101 45 4545

Код

Решение

Пусть есть два числа $n_1$ и $n_2$. $НОК$($n_1$, $n_2$) можно вычислить по формуле $НОК(n_1, n_2)={{n_1\cdot n_2}\over{НОД(n_1, n_2)}}$. Тогда задача сводится к нахождению $НОД$ двух чисел, который вычисляется алгоритмом Евклида:
$1$. Большее число делится на меньшее.
$2$. Если остаток от деления равен нулю, то меньшее число и есть $НОД$.
$3$. Если есть остаток, то большее число заменяется на остаток от деления и все действия повторяются.
После завершения цикла в одной переменной содержится ноль, а другая равна $НОД$, но поскольку неизвестно, которая из переменных равна $НОД$, то возвращается их сумма.

Ссылки

Related Images:

e-olymp 1151. Кладоискатель

Задача

Юный кладоискатель Рома прошел курс обучения по специальности «кладовое дело», и теперь проходит летнюю практику. Летняя практика проходит близ поселка «Каменные Зори» и длится ровно $b$ дней. Каждый день Рома находит $a$ закопанных в окрестности монет. Таким образом, в конце первого дня у него было $a$ монет, в конце второго — $2a,$ а по окончании практики у Ромы должно накопиться $b\cdot a$ монет.

Если в конце дня ответственный преподаватель замечал, что число Роминых монет делится на $b,$ то Роме разрешалось взять с полки пирожок, который он тут же съедал. Помогите Роме посчитать, сколько пирожков он съест за время прохождения практики.

Входные данные

Первая строка входного файла содержит два целых числа $a$ и $b$ ($1 \le a, b \le 10^9$).

Выходные данные

В выходной файл выведите число съеденных Ромой пирожков.

Тесты

# ВХОДНЫЕ ДАННЫЕ ВЫХОДНЫЕ ДАННЫЕ
1 1 2 1
2 2 2 2
3 10 5 5
4 56000 35 35
5 300 1000000000 100

Код программы

Решение

Нам заданы $a$ и $b$.
Существует 3 случая их отношения между собой:

  1. $a$ кратно $b$. Тогда в последовательности $a, 2a, 3a,\ldots,b \cdot a$ кратным $b$ будет каждый элемент последовательности. То есть количество дней равно $b$. Или НОД от $a$ и $b$, поскольку $a$ кратно $b$.
  2. Существует такое $k, k \in (1; b), k \in N.$ При котором: $k \cdot a$ кратно $b.$ $\frac{ka}{b} = c, c \in N$. Тогда у $b$ и $a$ есть НОД. $(b, a) = p, p > 1, p \in N$. $a = \tilde a \cdot p$, $b = \tilde b \cdot p.$ Тогда в последовательности $a, 2a, 3a,\ldots, b \cdot a$, а кратным $b$ будет каждый $k$-ый элемент данной последовательности. $c = \frac{ka}{b} = \frac{k \cdot \tilde a \cdot p}{\tilde b \cdot p} = \frac{k\tilde a }{\tilde b },$ $k$ обязан равняться $\tilde b $так как $\tilde a $и $\tilde b$ взаимно простые исходя из определения НОД и $c \in N.$ Отсюда $\frac{b}{k} = \frac{\tilde b p}{\tilde b}=p$ — количество кратных элементов последовательности.
  3. Не существует такого $k, k \in (1; b), k \in N$. При котором: $k \cdot a$ кратно $b$. И $a$ не кратно $b.$ Тогда в последовательности $a, 2a, 3a,\dots,b\cdot a$ кратным $b$ будет только последний элемент последовательности. Так как числа взаимно простые, то НОД равен $1.$

Исходя из этих рассуждений решение задачи сводится к нахождению НОД для $a$ и $b.$ Используем рекурсивную реализацию алгоритма Евклида.

Ссылки

Related Images:

e-olymp 571. НОД

Задача

Найти НОД (наибольший общий делитель ) $n$ чисел.

Входные данные

Первая строка содержит количество чисел [latex]n \left(1 < n < 101\right)[/latex]. Во второй строке через пробел заданы [latex]n[/latex] натуральных чисел, каждое из которых не превышает [latex]30000[/latex].

Выходные данные

НОД заданных чисел.

Тесты

# Входные данные Выходные данные
1 3
5 7 2
1
2 2
45 10
5
3 4
27 90 15 9
3
4 2
40 64
8
5 3
8 8 8
8

Код

Решение задачи


Для решения данной задачи воспользуемся алгоритмом Евклида — алгоритмом нахождения наибольшего общего делителя (НОД) пары целых чисел, т.е. самого большого числа, на которое можно без остатка разделить оба числа, для которых ищется НОД.

  • Условие задачи на e-olymp
  • Код решения на ideone

Related Images:

e-olymp 1154. Кружок хорового пения.

Условие задачи:

В некотором учебном заведении функционирует кружок хорового пения. Начало кружка всегда происходит единообразно: по сигналу руководителя кружка все [latex]N[/latex]  участников становятся в круг и каждый [latex]M[/latex] -й для распевки поёт гамму.

Руководитель кружка заметил, что размять голосовые связки не всегда удаётся всем участникам кружка. По заданным [latex]N[/latex] и [latex]M[/latex] помогите ему определить, или в очередной раз в разминке примут участие все участники хора.

Входные данные

Входные данные состоят из нескольких тестовых случаев. Каждый тестовый случай расположен в отдельной строке и содержит два целых числа [latex]N[/latex] и [latex]M[/latex], где [latex]\left( 1 \le N, M \le {10}^{3} \right).[/latex]

Выходные данные

Для каждого тестового случая в отдельной строке выведите «YES», если в разминке примут участие все участники хора, в противном случае выведите «NO».

Тесты:

n m answer
4 1  YES
 6  3  NO

 

Решение:

Для начала нам надо найти наибольший общий делитель(НОД). Для этого хорошо подойдет алгоритм Евклида и если НОД равен единице  то  все ученики распоются и мы выводим «YES» в другом случае мы выводим «NO».

Код:

Related Images: