e-olymp 34. Слово спонсора

Задача

По завершению турнира «Новогодняя ночь» спонсор решил отправить $m$ призерам подарки по почте. Зная количество участников $n$ и время доставки почты между некоторыми отделениями «Укрпочты», найти, через какое минимальное время последний из призеров получит свой приз.

Входные данные

Первая строка содержит $3$ числа: количество участников турнира $n$, количество призов спонсора $m$ и количество известных временных сроков доставки между некоторыми из отделений $k$. В следующей строке через пробел указаны номера участников, ставших призёрами.

Далее идет $k$ строк по $3$ числа в каждой с информацией об известных сроках доставки между некоторыми из отделений в формате: $a$ $b$ $t$, где $a$ и $b$ — номера отделений, $t$ $(0 \leqslant t \leqslant 365)$ — время доставки почты между ними. В последней строке находится единственное число — номер почтового отделения, из которого спонсор будет отправлять призы. Известно, что $1 \leqslant n, m, a, b \leqslant 365$.

Выходные данные

Если все призы будут доставлены участникам — вывести в первой строке «The good sponsor!», а в следующей — время, через какое последний из призеров получит свой приз. Если хотя бы один из участников не сможет получить приз — вывести в единственной строке «It is not fault of sponsor…». Фразы выводить без кавычек.

Тесты

Входные данные Выходные данные
1. 3 2 2
2 3
1 2 3
2 3 4
1
The good sponsor!
7
2. 5 1 4
5
1 3 2
2 3 3
4 2 5
4 5 6
1
The good sponsor!
16
3. 7 2 6
1 3
1 3 2
2 4 32
4 5 94
3 1 0
6 2 4
7 2 3
7
It is not fault of sponsor…
4. 5 2 6
1 2
3 1 1
3 4 2
2 4 3
5 1 4
4 5 5
2 3 7
2
The good sponsor!
6

Код программы

Первый вариант

Второй вариант

 

Объяснение

В данной задаче нам нужно построить граф, где будет $n$ вершин (по количеству участников) и $k$ рёбер (по количеству путей). Граф будет взвешенный и неориентированный. Также у нас будет список $m$ вершин (наши победители) и нам нужно проверить, достижимы ли они из начальной вершины (её номер указывается отдельно в самом конце).

К первому варианту кода

Итак, по входным данным мы строим список смежности и после запускаем поиск в ширину (BFS) из стартовой вершины. Так как граф взвешенный, расстоянием до вершины будем считать совокупный вес рёбер на пути к ней от стартовой вершины. Находясь в какой-либо вершине, мы проверяем, куда мы можем попасть из неё. Если сопряжённая вершина не посещена, то мы добавляем её в план. А если она уже посещена, мы проверяем, будет ли путь через вершину в которой мы находимся, короче того пути, которым мы добирались до этой сопряжённой вершины ранее. Если это так, то мы просто заменяем значение в счётчике пути для сопряжённой вершины и добавляем её в план, ведь если путь до неё стал короче, то и путь «через» неё тоже. После того, как мы нашли наикратчайшие пути до всех достижимых вершин, мы проверяем достигли ли мы всех из списка победителей и находим расстояние до самого дальнего из них. И вывод в зависимости от результата.

Ко второму варианту кода

По входным мы строим матрицу смежности. Для несуществующих рёбер мы ставим значение бесконечность ($10^6$ нам подходит, так как это то значение, которое нам не достичь по ограничениям), а для остальных — их вес. А дальше, из стартовой вершины мы запускаем алгоритм Дейкстры, находя кратчайшие пути до каждой вершины. После идёт проверка, всех ли необходимых вершин мы достигли и расстояние до самой дальней из них. И вывод, в зависимости от результата.

Ссылки

E-olymp (условие).

Ideone (первый вариант кода).

Ideone (второй вариант кода).

Related Images:

e-olymp 975

Задача: 

Дан ориентированный взвешенный граф. Найти пару вершин, кратчайшее расстояние от одной из которых до другой максимально среди всех пар вершин.

Входные данные 

В первой строке содержится количество вершин графа n (1n100). В следующих n строках находится по n чисел, которые задают матрицу смежности графа. В ней -1 означает отсутствие ребра между вершинами, а любое неотрицательное число — присутствие ребра данного веса. На главной диагонали матрицы всегда расположены нули.

Выходные данные

Вывести искомое максимальное кратчайшее расстояние.

Задача на e-olimp

Тесты

input output
4
0 5 9 -1
-1 0 2 8
-1 -1 0 7
4 -1 -1 0
16
5
0 5 5 6 -1
-1 0 9 8 4
-1 -1 0 3 8
6 -1 -1 0 5
-1 2 5 6 0
14

Решение:

По алгоритму Флойда (это алгоритм который способствует нахождению кротчайших расстояний между всеми вершинами взвешенного графа, благородя ему мы берем вершину и проверяем если возможно пройти через нее и это будет короче чем идти напрямик, то сохраняем длину пути через эту вершину ) мы проверяем на прочность все связи, иными словами — мы проходим все ребра и проверяем условие. Если существует альтернативный путь от одной вершины к другой, то будет ли он будет короче если да, то мы его заменяем. Таким алгоритмом мы находим все кротчайшие пути через вершины. Но в ответе должен быть максимальный из путей через вершины, поэтому приходится снова пройтись по путям через вершины (но это уже не ребра, а оптимальные длины путей) и найти кратчайший путь максимальной длины.

Related Images: