e-olymp 1948. Топологическая сортировка

Условие:
Дан ориентированный невзвешенный граф. Необходимо топологически отсортировать его вершины.

Входные данные

В первой строке содержатся количество вершин [latex]n[/latex] (1 ≤ [latex]n[/latex] ≤ 100000) и количество рёбер [latex]m[/latex] (1 ≤[latex]m[/latex] ≤ 100000) в графе. В следующих [latex]m[/latex] строках перечислены рёбра графа, каждое из которых задаётся парой чисел — номерами начальной и конечной вершины.

Выходные данные

Вывести любую топологическую сортировку графа в виде последовательности номеров вершин. Если граф невозможно топологически отсортировать, то вывести -1.

Тесты:

Входные данные Выходные данные
6 6
1 2
3 2
4 2
2 5
6 5
4 6
4 6 3 1 2 5
2 2
1 2
2 1
-1
4 5
1 2
1 3
3 4
2 4
1 4
1 3 2 4
4 5
1 2
1 3
3 4
2 4
4 1
-1

Решение:

Описание решения:

Для решения данной задачи необходимо было воспользоваться алгоритмом топологической сортировки, посредством поиcка в глубину. Чтобы применить данный алгоритм, необходимо было проверить граф на ацикличность с помощью алгоритма поиска в глубину. Это было реализовано функцией [latex]cyclic[/latex], которая проходила по всему графу в поиске цикла. Если цикл был найден, то функция меняла значение переменной [latex]cycle_st[/latex]. Далее, если цикл был найден, то программа выводить -1, иначе применяется алгоритм топологической сортировки, реализованный в двух функциях:

и

После выполнения этих функций был получен топологически отсортированный список вершин, но в обратном порядке. Поэтому разворачиваем его с помощью функции [latex]reverse[/latex] .

Засчитанное решение на e-olymp.com.

Код решения на ideone.com.

Related Images:

e-olymp 4003. Топологическая сортировка

Задача взята отсюда.

Условие

Дан ориентированный невзвешенный граф. Необходимо его топологически отсортировать.

Входные данные

В первой строке содержатся два натуральных числа [latex]n[/latex] и [latex]m[/latex] ([latex]1 \leq n \leq 10^5[/latex], [latex]1 \leq m \leq 10^5[/latex]) — количество вершин и рёбер в графе соответственно. Далее в [latex]m[/latex] строках перечислены рёбра графа. Каждое ребро задаётся парой чисел — номерами начальной и конечной вершин соответственно.

Выходные данные

Вывести любую топологическую сортировку графа в виде последовательности номеров вершин. Если граф невозможно топологически отсортировать, требуется вывести [latex]-1[/latex].

Решение

Для решения использовался алгоритм топологической сортировки методом поиска в глубину (подробнее в комментариях к коду). Функция bool dfs() (поиск в глубину) также проверяет, цикличен ли граф, т.к. по условию он может как содержать, так и не содержать циклы. Результат сортировки заносим в вектор result, потом выводим его элементы по порядку.

Тесты

Входные данные Выходные данные
1 6 6
1 2
3 2
4 2
2 5
6 5
4 6
 4 6 3 1 2 5
2  3 3
1 2
2 3
3 1
 -1
3 4 4
1 4
4 3
3 2
4 2
 1 4 3 2

Код

Ссылки

Код на ideaone.

Засчитанное решение на e-olymp.

Наглядное объяснение топологической сортировки здесь.

Related Images:

e-olimp 1667. Конденсация графа

Задача e-olimp.com №1667. Ссылка на засчитанное решение.

Вам задан связный ориентированный граф с [latex]N[/latex] вершинами и [latex]M[/latex] ребрами [latex]\left(1\leq N\leq 20000, 1\leq M\leq 200000 \right)[/latex]. Найдите  компоненты  сильной связности заданного графа и топологически отсортируйте его конденсацию.

Входные данные

Граф задан во входном файле следующим образом: первая строка содержит числа [latex]N[/latex] и [latex]M[/latex]. Каждая из следующих [latex]M[/latex] строк содержит описание ребра — два целых числа из диапазона от [latex]1[/latex]  до [latex]N[/latex] — номера начала и конца ребра.

Выходные данные

В первой строке выведите число [latex]K[/latex] — количество компонент сильной связности в заданном графе. В следующей строке выведите [latex]N[/latex] чисел — для каждой вершины выведите номер компоненты сильной связности, которой принадлежит эта вершина. Компоненты сильной связности должны быть занумерованы таким образом, чтобы для любого ребра номер компоненты сильной связности его начала не превышал номера компоненты сильной связности его конца.

Тесты:

6 7 

1 2

2 3

3 1

4 5

5 6

6 4

2 4

1 1 1 2 2 2

10 19 

1 4

7 8

5 10

8 9

9 6

2 6

6 2

3 8

9 2

7 2

9 7

4 5

3 6

7 3

6 7

10 8

10 1

2 9

2 7

1 2 2 1 1 2 2 2 2 1

Иллюстрация к первому тесту:

1

Иллюстрация ко второму тесту:

1

Код программы:

Алгоритм решения

Прежде всего топологически сортируем граф [latex]G[/latex] (с помощью функции dfs_1), записывая результат в вектор order. В итоге первой вершиной этого вектора окажется некая вершина [latex]u[/latex], принадлежащая «корневой» компоненте сильной связности, то есть в которую не входит ни одно ребро в графе конденсаций.

Теперь нужно сделать такой обход из этой вершины, который посетил бы только эту компоненту сильной связности и не зашёл бы ни в какую другую. Для этого служит функция dfs_2, которая применяется к траспонированному графу [latex]G^{T}[/latex] (граф, полученный из [latex]G[/latex] изменением направления каждого ребра на противоположное). В этом графе будут те же компоненты сильной связности, что и в исходном графе. Пусть [latex]G^{*}[/latex] — это граф конденсации, получаемый из данного графа сжатием каждой компоненты сильной связности в одну вершину (очевидно, что он ацикличен). Тогда [latex]\left(G^{T} \right)^{*}[/latex] будет равен транспонированному графу конденсации исходного графа [latex]G^{*}[/latex]. Это значит, что теперь из рассматриваемой нами «корневой» компоненты уже не будут выходить рёбра в другие компоненты.

Научившись это делать, мы сможем постепенно выделить все компоненты сильной связности: удалив из графа вершины первой выделенной компоненты, мы снова найдём среди оставшихся вершину с наибольшим временем выхода, снова запустим из неё этот обход, и так далее.

Таким образом, чтобы обойти всю «корневую» компоненту сильной связности, содержащую некоторую вершину [latex]u[/latex], достаточно запустить обход из этой вершины в графе[latex]G^{T}[/latex]. Этот обход посетит все вершины этой компоненты сильной связности и только их. Дальше мы можем мысленно удалить эти вершины из графа, находить очередную вершину с максимальным значением времени выхода и запускать обход на транспонированном графе из неё.

Так после каждого запуска dfs_2 в векторе component окажутся все вершины, принадлежащие одной компоненте связности. Поэтому каждой из тих вершин присваиваем номер компоненты, после чего вектор component чистится и идёт новая итерация (номер компоненты при этом увеличивается на 1).

Related Images: