Ю1.24

Задача. Треугольник задается координатами вершин на плоскости: [latex]A(x_{1},y_{1}), B(x_{2},y_{2}), C(x_{3},y_{3})[/latex]. Найти точку пересечения биссектрис [latex] I(x,y)[/latex]  треугольника [latex]ABC[/latex] (центр вписанной в него окружности).

 

Тесты:

 
[latex]x_{1}[/latex] [latex]y_{1}[/latex] [latex]x_{2}[/latex] [latex]y_{2}[/latex] [latex]x_{3}[/latex] [latex]y_{3}[/latex] [latex]x[/latex] [latex]y[/latex] Комментарий
0 4 3 0 0 0 1.00 1.00 Пройден
0 -4 -3 0 0 0 -1.00 -1.00 Пройден
-5 -1 0 -13 -5 -13 -3.00 -11.00 Пройден
1 1 5 1 3 4 3.00 2.07 Пройден

Код на С

Код на Java

Решение:

Для нахождения координат биссектрисы воспользуемся формулами :

[latex]x=\frac{ax_{1}+bx_{2}+cx_{3}}{a+b+c}[/latex],

[latex]y=\frac{ay_{1}+by_{2}+cy_{3}}{a+b+c}[/latex] ,

где [latex] a [/latex]-длина стороны [latex]CB[/latex], [latex]b[/latex]-длина стороны [latex]AC[/latex], [latex]c[/latex]-длина стороны [latex]AB[/latex].

 

Для этого необходимо предварительно найти длины сторон по формуле :

[latex] AB=\sqrt{(x_{1}-x_{2})^{2}+(y_{1}-y_{2})^{2}} [/latex], где [latex] A(x_{1},y_{1}), B(x_{2},y_{2}) [/latex].

Related Images:

3 thoughts on “Ю1.24

  1. «Где а длина стороны» и дальше формулы увы не видны.
    В последних двух формулах 1 и 2 написаны не как индексы.

Добавить комментарий