Задача
Черный Ящик представляет собой примитивную базу даных. Он может хранить массив целых чисел, а также имеет специальную переменную $i$. В начальный момент Черный Ящик пустой, переменная $i$ равна $0$. Черный Ящик обрабатывает последовательность команд (транзакций). Существует два типа транзакций:
ADD(x): добавить элемент x в Черный Ящик;
GET: увеличить $i$ на $1$ и вывести $i$-ый минимальный элемент среди всех чисел, находящихся в Черном Ящике.
Помните, что $i$-ый минимальный элемент находится на $i$-ом месте после того как все элементы Черного Ящика будут отсортированы в неубывающем порядке.
Рассмотрим работу черного ящика на примере:
№ | Транзакция | $i$ | Содержимое Черного Ящика после транзакции | Ответ |
1 | ADD(3) | 0 | 3 | |
2 | GET | 1 | 3 | 3 |
3 | ADD(1) | 1 | 1, 3 | |
4 | GET | 2 | 1, 3 | 3 |
5 | ADD(-4) | 2 | -4, 1, 3 | |
6 | ADD(2) | 2 | -4, 1, 2, 3 | |
7 | ADD(8) | 2 | -4, 1, 2, 3, 8 | |
8 | ADD(-1000) | 2 | -1000, -4, 1, 2, 3, 8 | |
9 | GET | 3 | -1000, -4, 1, 2, 3, 8 | 1 |
10 | GET | 4 | -1000, -4, 1, 2, 3, 8 | 2 |
11 | ADD(2) | 4 | -1000, -4, 1, 2, 2, 3, 8 |
Необходимо разработать эффективный алгоритм выполнения заданной последовательности транзакций. Максимальное количество транзакций ADD и GET равно $30000$ (каждого типа).
Опишем последовательность транзакций двумя целочисленными массивами:
- $A_1, \ A_2, \ldots , \ A_m:$ последовательность элементов, которая будет добавляться в Черный Ящик. Элементами являются целые числа, по модулю не большие $2 000 000 000$, $m \leq 30000$. Для выше описанного примера $A = \left (3, 1, -4, 2, 8, -1000, 2 \right).$
- $u_1, \ u_2, \ldots , \ u_n:$ последовательность указывает на количество элементов в Черном Ящике в момент выполнения первой, второй, … $n$-ой транзакции GET. Для выше описанного примера $u = \left (1, 2, 6, 6 \right ).$
Работа Черного Ящика предполагает, что числа в последовательности $u_1, \ u_2, \ldots , \ u_n$ отсортированы в неубывающем порядке, $n \leq m$, а для каждого $p \left (1 \leq p \leq n \right )$ имеет место неравенство $p \leq u(p) \leq m$. Это следует из того, что для $p$-го элемента последовательности $u$ мы выполняем GET транзакцию, которая выводит $p$-ый минимальный элемент из набора чисел $A_1, \ A_2, \ldots , \ A_{u_p}$.
Входные данные
Состоит из следующего набора чисел: $m, \ n, \ A_1, \ A_2, \ldots , \ A_m, \ u_1, \ u_2, \ldots , \ u_n.$ Все числа разделены пробелами и (или) символом перевода на новую строку.
Выходные данные
Вывести ответы Черного Ящика на последовательность выполненных транзакций. Каждое число должно выводиться в отдельной строке.
Тесты
Входные данные | Выходные данные |
7 4 3 1 -4 2 8 -1000 2 1 2 6 6 |
3 3 1 2 |
8 3 5 8 3 7 3 5 7 0 2 3 3 |
5 5 8 |
10 4 6 3 7 3 8 4 7 4 6 15 4 6 8 9 |
3 3 4 4 |
5 5 1 2 3 4 5 1 2 3 4 5 |
1 2 3 4 5 |
11 5 4 6 8 9 5 3 6 8 10 12 13 6 7 8 9 10 |
3 4 5 6 6 |
Код программы
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
#include <iostream> #include <vector> #include <set> #include <climits> using namespace std; int main() { ios_base::sync_with_stdio(false); cin.tie(0); int m, n; cin >> m >> n; vector<int> nums(m); for(int i = 0; i < m; i++){ cin >> nums[i]; } multiset<int> blackBox; blackBox.insert(INT_MAX); auto it = blackBox.begin(); for(int i = 0; i < n; i++){ int req; cin >> req; for(int j = blackBox.size() - 1; j < req; j++){ blackBox.insert(nums[j]); if(nums[j] < *it) it--; } cout << *it << endl; it++; } return 0; } |
Решение задачи
Пусть nums — множество всех элементов последовательности $A_n$. blackBox — мультимножество, представляющее собой описанный в задаче Черный Ящик на $i$-ом запросе. Изначально blackBox содержит «бесконечность» для избежания выхода за пределы. it — итератор, указывающий на $i$-ый минимальный элемент blackBox. Изначально данный итератор указывает на первый элемент множества. На $i$-ом запросе в blackBox копируются элементы массива nums от $u_{i-1}-1$-го до $u_{i}-1$-го (примем, что $u_0$ = 0). Тогда при добавлении в blackBox элемента, меньшего, чем тот, на который в данный момент указывает итератор it — $min_i$, $i$-ым минимальным элементом, становится элемент, предшествующий $min_i$. После выполнения ответа на $i$-ый запрос итератор должен указывать на $i+1$-ый минимальный элемент, то есть на элемент, следующий за $min_i$.
Ссылки
Условие задачи на e-olymp
Решение на e-olymp
Код решения на Ideone