Задача
«Одномерная Кликомания» — это логическая компьютерная игра. Для нее используется полоска размеров $1 \times N$, разбитая на $N$ квадратов $1 \times 1.$ Каждый из квадратов окрашен в красный или желтый цвет.
За один ход игрок может выбрать любой из квадратов и щелкнуть по нему мышкой. В результате компьютер выделяет на полоске группу максимальной длины, состоящую из стоящих подряд квадратов одинакового цвета и содержащую выделенный квадрат, и удаляет все квадраты из этой группы. При этом все квадраты, находящиеся правее удаленной группы (если они существуют), сдвигаются влево так, чтобы пристыковаться к квадратам, находящимся левее удаленной группы (если они существуют) и сохранить целостность полоски:
Игрок может удалять группы квадратов любой длины, в том числе, состоящие из одного квадрата. Игра продолжается до тех пор, пока все квадраты не удалены.
В начале игры количество баллов у игрока равно нулю. После каждого его хода количество баллов пересчитывается. Если игрок очередным ходом удалил группу из $L$ квадратов, то вычисляется число $X = A \cdot L + B$, где $A$ и $B$ — некоторые целочисленные константы. Если число $X$ неотрицательное, то количество баллов игрока увеличивается на $X$, иначе оно уменьшается на $-X$.
Цель игрока — набрать по окочанию игры как можно больше баллов. Напишите программу, оптимально играющую в «Одномерную Кликоманию». Программа должна получать на входе цвета всех квадратов исходной полоски, а также целые числа $A$ и $B$, и возвращать максимальное количество баллов, которое может набрать игрок по окончанию игры.
Входные данные
В первой строке задана строка, состоящая из символов $’R’/’Y’$, перечисляющих слева направо цвета всех квадратов исходной полоски. Символ $’R’$ соответствует квадрату красного цвета, а символ $’Y’$ — квадрату желтого цвета.
Во второй и третьей строках соответственно целые числа $A(1 \leq A \leq 1000)$ и $B(-100 \leq B \leq 100)$, задающие константы в формуле начисления очков за каждый сделанный ход.
Выходные данные
Целое число, равное максимальному количеству очков, которое может набрать игрок по окончанию игры.
Тесты
Входные данные | Выходные данные | |
1 | YYYYYYY 73 14 |
525 |
2 | RYRYRYR 100 -100 |
300 |
3 | YYYRRR 1 -100 |
-194 |
4 | YRYYRRRYYYYY 12 34 |
314 |
Код программы
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 |
#include <iostream> #include <string> #include <vector> using namespace std; int main() { int a, b, count = 1; vector <int> vec; string str; getline(cin, str); int n = str.length(); for (int i = 1; i < n; i++) if (str[i - 1] != str[i]) { vec.push_back(count); count = 1; } else count++; vec.push_back(count); cin >> a >> b; int sum = 0; for (int e : vec) sum += e; int len = vec.size(); cout << a * sum + ((b < 0) ? (len / 2 + 1) : len) * b; return 0; } |
Решение
По условию задачи необходимо определить максимальное количество очков которое можно получить в игре. Число $a$ всегда положительное и умножается на количество квадратов удалённых за один ход. В конце игры будут удалены все квадраты, а значит этот вклад в общий счёт игры равен $a \cdot n$, где $n$ — количество квадратиков в игре. Число $b$ может быть как положительным так и отрицательным. В первом случае, нам выгодно, что бы игрок совершил максимальное число ходов, то есть ровно столько, сколько содержится последовательностей из квадратиков одного цвета. Если $b$ меньше нуля, то счёт будет наибольший, если игрок сделает наименьшее количество ходов, а именно избавиться от чередования цветов и за один ход удалит все квадраты, это количество последовательностей пополам, плюс один.
Считаем необходимые данные и выводим ответ в зависимости от положительности $b$.