e-olymp 398. Торт для Серёжи

Задача

prb398Мама испекла Серёже на день рождения большой и вкусный круглый торт и поручила ему самому его разрезать. У него в распоряжении есть достаточно длинный нож, позволяющий делать разрез по всему торту, однако так как общение с режущими инструментами всегда таит в себе определенные опасности, Серёжа хочет сделать минимальное количество разрезов так, чтобы всем гостям досталось хотя бы по одному кусочку. Естественно, при этом он должен не забыть, что и ему должен за праздничным столом достаться хотя бы один кусочек маминого торта, но при этом Серёжу абсолютно не интересует, какого размера и формы будут куски торта – для него главное, чтобы они все имели такую же толщину, как и испеченный мамой торт.

Учтите, что гостей к Серёже может придти достаточно много.

Входные данные

Одно число – количество гостей $n$ $(n < 210000001)$.

Выходные данные

Искомое количество разрезов $k$.

Тесты

Входные данные

Выходные данные

1
3
2
2 0 0
3 120 15
4 210000000 20494

Код программы

Решение

Максимального количества кусков можно достичь в том случае, когда каждый новый разрез будет пересекать все предыдущие. Таким образом новым $k$-ым сечением мы разрежем $k$ кусков торта на две части, а к общему количеству кусочков прибавится ровно $k$ новых. Заметим, что имениннику всегда достанется кусок, который не считается новым. Множество всех новых кусков составит арифметическую прогрессию: $0,1, 2, 3 … k-1, k$ значит общее количество кусочков для гостей вычисляется как сумма арифметической прогрессии $\mathbf{n = \frac{i^{2}+k}{2}}$. Тогда $\mathbf{k =\left \lceil \frac{-1+\sqrt{1+8n}}{2} \right \rceil }$.

Эту формулу немного можно упростить, в результате получим $\mathbf{k =\left [ \sqrt{2n}\right ]}$

Ссылки

Условие задачи e-olymp

Код решения ideone

e-olymp 112. Торт

В честь дня рождения наследника Тутти королевский повар приготовил огромный праздничный торт, который был подан на стол Трем Толстякам. Первый толстяк сам мог бы целиком его съесть за $t_1$ часов, второй — за $t_2$ часов, а третий — за $t_3$ часов.

Сколько времени потребуется толстякам, чтобы съесть весь праздничный торт вместе?

Входные данные

Единственная строка содержит три целых неотрицетельных числа $t_1$, $t_2$ и $t_3$, каждое из которых не превосходит $10000$.

Выходные данные

Вывести время в часах, за которое толстяки вместе могут съесть торт. Результат округлить до двух десятичных знаков.

TESTS

$t_1$

$t_2$

$t_3$

$t$

3 3 3 1.00
4 67 50 3.51
228.22 8 2.28 1.76
1577 157.7 15.77 14.21

C ветвлением:

Без ветвления:

 

Решение с ветвлением

Первый толстяк ест со скоростью один торт за $t_1$ часов. Аналогично и с остальными толстяками. Тогда из торта следует вычесть те части, которые съест каждый, чтобы торта не осталось. Получается уравнение
$1-\frac{t}{t_1}-\frac{t}{t_2}-\frac{t}{t_3}=0;$
$\frac{t}{t_1}+\frac{t}{t_2}+\frac{t}{t_3}=1;$
$\frac{tt_2t_3+tt_1t_3+tt_1t_2}{t_1t_2t_3}=1;$
$t\left(t_1t_2+t_2t_3+t_1t_3\right)=t_1t_2t_3;$
$t = \frac{t_1t_2t_3}{t_1t_2+t_2t_3+t_1t_3};$
Рассматриваем случай, при котором одна из переменных равна нулю, тогда выводим ноль. В противном случае выводим значение $t$ с округлением до сотых.

Решение без ветвления

Так как по условию задачи первый толстяк съедает весь торт за $t_1$ часа, второй — за $t_2$ часа и третий — за $t_3$ часа, то их скорость поедания торта составит $\frac{1}{t_1}$, $\frac{1}{t_2}$ и $\frac{1}{t_3}$ торта в час соответсвенно. Если толстяки будут есть торт одновременно, то в час они будут съедать $\left(\frac{1}{t_1}+\frac{1}{t_2}+\frac{1}{t_3}\right)$ часть торта. Тогда весь торт будет съеден за $\frac{1}{\frac{1}{t_1}+\frac{1}{t_2}+\frac{1}{t_3}}$ часов.
Затем нужно вывести результат, округлённый до двух десятичных знаков. Для этого воспользуемся функцией setprecision() и её аргументом fixed

Ссылки

Условие задачи e-olymp
Код решения