e-olymp 2501. Круговая диаграмма

Задача


Для графического изображения соотношения между различного рода величинами во многих областях человеческой деятельности используются различные графики и диаграммы. Одним из типов диаграмм является так называемая круговая диаграмма.

Исходными данными для этой диаграммы является набор чисел $a_1,\ldots, a_n, а$ диаграмма представляет собой круг радиуса $r$, разделенный на секторы. При этом каждому из чисел соответствует ровно один сектор, площадь которого пропорциональна этому числу. Общая площадь секторов равна площади круга.

Ваша задача состоит в том, чтобы по набору чисел и по радиусу круга определить площадь каждого из секторов круговой диаграммы.

Входные данные

Первая строка содержит два целых числа $n$ и $r \space (1 \leq n, r \leq 100)$. Вторая строка содержит $n$ целых чисел $a_1,\ldots, a_n \space (1 \leq a_i \leq 100$ для всех $i$ от $1$ до $n)$.

Выходные данные

Выведите $n$ вещественных чисел — площади секторов, соответствующих числам $a_1,\ldots, a_n$. Выводите каждое из чисел в отдельной строке.

Все эти числа должны быть выведены с точностью не хуже $10^{-6}$.

Тесты

Входные данные Выходные данные
3 2
1 4 3
1.570796327
6.283185307
4.712388980
2 3
3 8
7.711181968
20.563151914
4 5
2 5 9 1
9.239978393
23.099945982
41.579902768
4.619989196
5 9
4 16 8 20 11
17.252135928
69.008543713
34.504271856
86.260679641
47.443373803

Код программы

Решение

Найдем сперва сумму всех чисел $a_i$ и площадь диаграммы (по известной формуле площади круга). Теперь можем легко посчитать площади каждого из секторов нашей диаграммы, разделив площадь последней на ранее найденную сумму и умножив их частное на соответствующее число $a_i$.

Ссылки

Условие задачи на e-olymp
Код решения на Ideone

Related Images:

MLoop19

Условие задачи

Вычислите с заданной точностью [latex]\varepsilon[/latex]сумму ряда [latex]\sum\limits_{i=1}^{\infty}{\frac{\sqrt{i+1}}{ie^i}} [/latex].

Задачу также можно найти здесь.

Тесты

Точность [latex]\varepsilon[/latex] Сумма ряда
1 0.1 0.637464
2 0.001 0.685288
3 0.0001 0.685782
4 0.000001 0.685848

Алгоритм решения

Поскольку в данной задаче использование рекуррентной формулы приведет только к накоплению погрешности, будем считать каждое слагаемое суммы непосредственно, пока не достигнем заданной точности. Для этого зададим начальное значение переменной exponent = M_E для [latex]i=1[/latex] , а также для первого члена ряда а = sqrt(2)/ exponent. Тогда для каждого значения счетчика нам нужного всего лишь накапливать степень экспоненты и вычислять текущий член ряда по формуле [latex]\frac{\sqrt{i+1}}{i\cdot{e}^{i}} [/latex] , накапливая сумму, пока не достигнем заданной точности эпсилон.

Проверить правильность найденной суммы можно с помощью сайта WolframAlpha.

 

Код программы

Код программы на сайте ideone.

Related Images:

MLoop 10

Вычислите с точностью [latex]\varepsilon[/latex] значение функции f\left( x \right) = \text{ch}x. При вычислениях допустимо использовать только арифметические операции.

Решение задачи:

Для нахождения значения функции  f\left( x \right) = \text{ch}x (гиперболический косинус) с точностью [latex]\varepsilon[/latex]  воспользуемся формулой Тейлора (разложение функции в бесконечную сумму степенных функций):[latex]chx=1+\frac{x^2}{2}+\frac{x^4}{4}+[/latex]…[latex]=\sum_{n=0}^{\infty}\frac{1}{(2n+1)!}\times x^{2n}[/latex]. [latex]x_n=\frac{1}{(2n+1)!}\times x^{2n}[/latex], тогда [latex]x_{n-1}=\frac{1}{(2(n-1)+1)!}\times x^{2(n-1)}[/latex]. Рекуррентное соотношение [latex]x_n[/latex] и [latex]x_{n-1}=[/latex][latex]\frac{x_n}{x_{n-1}}=\frac{x^2}{2n\times(2n-1)}[/latex].

Код программы:

Тесты:

Входные данные Выходные данные
x e ch(x)
9 0.01 4051.54
16 0.0001 4.44306e+06
0.85 0.00001 1.38353
0.11 0.001 1.00606

Здесь можно посмотреть решение задачи на ideone.com

Related Images:

MLoop 16

Постановка задачи

MLoop16.

Вычислите с точностью [latex]\epsilon[/latex] значение функции [latex]f\left( x \right) = \frac{\sin 2x}{x}[/latex]. При вычислениях допустимо использовать только арифметические операции.

Алгоритм решения

Разложим [latex]g \left( x \right) = \sin x[/latex] по формуле Тейлора с опорной точкой [latex]x_0 = 0[/latex] и остаточным членом в форме Лагранжа:
[latex]g \left( x \right) = P_n \left( x_0 ; x \right) + R_n \left( x_0 ; x \right)[/latex],
[latex]P_n \left( x_0 ; x \right) = g \left( x_0 \right) + \sum_{k = 1}^{n} \frac{g^{\left( k \right)} \left( x_0 \right) }{k!} \left( x — x_0 \right) ^k[/latex],
[latex]R_n \left( x_0 ; x \right) = \frac{g^{\left( n + 1 \right)} \left( \xi \right)}{\left( n + 1 \right) !}\left( x — x_0 \right) ^{n + 1} , x_0 < \xi < x[/latex].

Найдем производные [latex]g \left( x \right)[/latex]:
[latex]g’ \left( x \right) = \cos x = \sin \left( x + \frac{\pi}{2} \right)[/latex],
[latex]g» \left( x \right) = \cos \left( x + \frac{\pi}{2} \right) = \sin \left( x + 2 \frac{\pi}{2} \right)[/latex],
[latex]g»’ \left( x \right) = \cos \left( x + 2 \frac{\pi}{2} \right) = \sin \left( x + 3 \frac{\pi}{2} \right)[/latex],
[latex]\cdots[/latex]
[latex]g^{\left( k \right)} \left( x \right) = \cos \left( x + \left( k — 1 \right) \frac{\pi}{2} \right) = \sin \left( x + k \frac{\pi}{2} \right)[/latex].

Вычислим значение функции и ее производных в точке [latex]x_0[/latex]:
[latex]g \left( x_0 \right) = \sin x_0 = \sin 0 = 0[/latex],
[latex]g’ \left( x_0 \right) = \sin \left( x_0 + \frac{\pi}{2} \right) = \sin \frac{\pi}{2} = 1[/latex],
[latex]g» \left( x_0 \right) = \sin \left( x_0 + 2 \frac{\pi}{2} \right) = \sin \pi = 0[/latex],
[latex]g»’ \left( x_0 \right) = \sin \left( x_0 + 3 \frac{\pi}{2} \right) = \sin \frac{3 \pi}{2} = -1[/latex],
[latex]\cdots[/latex]
[latex]g ^{ \left( 2k — 1 \right) } \left( x_0 \right) = \sin \left( x_0 + \left( 2k — 1 \right) \frac{\pi}{2} \right) = \sin \left( \pi k + \frac{\pi}{2} \right) = \left( -1 \right) ^{k — 1}[/latex],
[latex]g ^{ \left( 2k \right) } \left( x_0 \right) = \sin \left( x_0 + 2k \frac{\pi}{2} \right) = \sin \pi k = 0[/latex].

Тогда
[latex]P_n \left( x_0 ; x \right) = \sum_{k = 1}^{ \lceil \frac{n}{2} \rceil } \frac{ \left( -1 \right) ^{k — 1} \cdot x^{2k — 1} }{ \left( 2k — 1 \right) ! }[/latex],
[latex]R_n \left( x_0 ; x \right) = \frac{\sin \left( \xi + \left( n + 1 \right) \frac{\pi}{2} \right) \cdot x ^{n + 1} }{ \left( n + 1 \right) ! }[/latex],
[latex]g \left( x \right) = \sum_{k = 1}^{ \lceil \frac{n}{2} \rceil } \frac{ \left( -1 \right) ^{k — 1} \cdot x^{2k — 1} }{ \left( 2k — 1 \right) ! } + \frac{\sin \left( \xi + \left( n + 1 \right) \frac{\pi}{2} \right) \cdot x ^{n + 1} }{ \left( n + 1 \right) ! }[/latex],
[latex]f \left( x \right) = \frac{ g \left( 2x \right) }{ x } = \sum_{k = 1}^{ \lceil \frac{n}{2} \rceil } \frac{ \left( -1 \right) ^{k — 1} \cdot \left( 2x \right) ^{2k — 1} }{ x \cdot \left( 2k — 1 \right) ! } + \frac{\sin \left( \xi + \left( n + 1 \right) \frac{\pi}{2} \right) \cdot \left( 2x \right) ^{n + 1} }{ x \cdot \left( n + 1 \right) ! }[/latex].

Осталось найти такое [latex]n \in \mathbb{N}[/latex], чтобы выполнялось неравенство
[latex]\left| \frac{\sin \left( \xi + \left( n + 1 \right) \frac{\pi}{2} \right) \cdot \left( 2x \right) ^{n + 1} }{ x \cdot \left( n + 1 \right) ! } \right| \le \left| \frac{ \left( 2x \right) ^ {n + 1} }{ x \left( n + 1 \right) ! } \right| < \epsilon[/latex].

Для ускорения вычислений зададим реккурентную формулу для слагаемых суммы
[latex]\sum_{k = 1}^{ \lceil \frac{n}{2} \rceil } \frac{ \left( -1 \right) ^{k — 1} \cdot \left( 2x \right) ^{2k — 1} }{ x \cdot \left( 2k — 1 \right) ! }[/latex].
Представим каждое слагаемое суммы в виде
[latex]\alpha_k = \alpha_{k — 1} \cdot b_k = \frac{ \left( -1 \right) ^{k — 1} \cdot \left( 2x \right) ^{2k — 1} }{ x \cdot \left( 2k — 1 \right) ! }[/latex].
Выразим [latex]b_k[/latex]:
[latex]b_k = \frac{ \alpha_k }{ \alpha_{ k — 1 } } = \frac{ \left( -1 \right) ^ {k — 1} \cdot \left( 2x \right) ^ {2k — 1} \cdot x \left( 2 \left( k — 1 \right) — 1 \right) ! }{ x \left( 2k — 1 \right) ! \cdot \left( -1 \right) ^ { \left( k — 1 \right) — 1 } \cdot \left( 2x \right) ^ {2 \left( k — 1 \right) — 1} } = — \frac{4x^2}{\left( 2k — 2 \right) \left( 2k — 1 \right)}[/latex].
Тогда
[latex]\alpha_k = \begin{cases} 2 & k = 1, \\ \alpha_{k-1} \cdot b_k & k > 1. \end{cases}[/latex]

Тесты

Входные данные Выходные данные
[latex]x[/latex] [latex]\epsilon[/latex] [latex]f\left( x \right) = \frac{\sin 2x}{x} + \lambda, \lambda\in\left( -\epsilon;\epsilon \right)[/latex]
[latex]\frac{5\pi}{2}[/latex]  [latex]0[/latex]  [latex]\frac{2}{5\pi}[/latex]
 [latex]\pi[/latex]  [latex]0.01[/latex]  [latex]0[/latex]
 [latex]0[/latex]  [latex]0.1[/latex]  [latex]\emptyset[/latex]

Реализация

ideone: ссылка

Related Images:

MLoop 23

Задача:

Вычислите с точностью [latex]\varepsilon[/latex]  сумму ряда [latex]{\sum_{i=1}^\infty}\frac{(-1)^i}{i!}[/latex].

Входные данные: Точность [latex]\varepsilon[/latex].

Выходные данные: Сумма ряда [latex]{\sum_{i=1}^\infty}\frac{(-1)^i}{i!}[/latex] с точностью [latex]\varepsilon[/latex].

Тесты:

0.1

0.01

0.001

0.0001

Точность

[latex]\varepsilon[/latex]

Сумма ряда

[latex]{\sum_{i=1}^\infty}\frac{(-1)^i}{i!}[/latex]

1 0.1 0.375
2 0.01 0.366667
3 0.001 0.367857
4 0.0001 0.367882

Алгоритм решения:

В условии нам дана формула суммы ряда [latex]{\sum_{i=1}^\infty}\frac{(-1)^i}{i!}[/latex] с точностью [latex]\varepsilon[/latex].

Для начала, программа читает входные данные и присваивает их переменной [latex]\varepsilon[/latex](точность). Также вводим переменную [latex]sum[/latex], равную первому члену (на случай если введенная точность не позволит циклу начаться), накапливающую сумму ряда.

Далее следует цикл [latex]for[/latex] считающий сумму членов [latex]x[/latex] пока не достигнет точности [latex]\varepsilon[/latex]. Цикл прибавляет к [latex]sum[/latex] слагаемое, деленное на [latex]i[/latex] и с противоположным знаком. По окончании цикла выводим значение суммы [latex]sum[/latex] .

Ссылка на условие задачи

Ссылка на компилятор с кодом

Related Images:

MLoop 13

 

Условие

Условие задачи

Вычислите с точностью [latex]\varepsilon[/latex]   значение функции   [latex]f(x)=\arcsin x[/latex].
При вычислениях допустимо использовать только арифметические операции.

Тесты

[latex] x [/latex] [latex] arcsin x [/latex]
1 -1  -1.56709
2 -0.5  -0.523599
3 0 0
4 0.5  0.523599
5 0.7071067  0.785398
6 0.8660254  1.0472

Решение

Чтобы разложить тригонометрическую функцию только арифметическими операциями, нужно воспользоваться формулами Тейлора.

Ряд Тейлора для функции [latex]\arcsin x[/latex]:

[latex]\arcsin x = \sum_{n=0}^{\infty} \frac{(2n)!}{4^n (n!)^2 (2n+1)} x^{2n+1}[/latex] или:
[latex]\arcsin x = x + \frac{x^3}{6} + \frac{3x^5}{40} + \cdots[/latex]

Вводим переменную, которая будет считать арксинус — [latex]arcsin[/latex].

Так как первый член — [latex]x[/latex], то начальное значение [latex]\arcsin =x[/latex]   и   [latex]a=x[/latex].  [latex]a[/latex] — это слагаемые суммы, оно будет изменятся с каждым последующим значением [latex]n[/latex].

Теперь нужно узнать на сколько домножать первое слагаемое из ряда Тейлора, чтобы получить второе:

[latex]\frac{(2(n+1))!\cdot x^{2(n+1)+1}}{4^{n+1}((n+1)!)^2 (2(n+1)+1)} \cdot \frac{4^n (n!)^2 (2n+1)}{(2n)!\cdot x^{2n+1}} = \frac{(2n+1)^2 x^2}{2(2n+3)(n+1)}[/latex]

Видно, что эта функция сначала возрастает, а потом убывает ( [latex]x\leq 1[/latex] )
[latex]\frac{(2n+1)^2 x^2}{2(2n+3)(n+1)}[/latex],  поэтому [latex]a[/latex] будет уменьшаться. Мы задаем точность [latex]\varepsilon[/latex] и пока [latex]a > \varepsilon[/latex] мы вычисляем  сумму
[latex]\arcsin +=a[/latex].

Код

Код на ideone

Related Images:

ML19

Задача. Известна длина окружности. Найти площадь круга, ограниченного этой окружностью.

Тесты

Длина окружности Точность  Результат работы программы
0 3 Невозможно выполнить для вырожденной окружности
-1 8 Ошибка ввода данных
34 -5 Ошибка ввода данных
25 18 Вывод с заданной точностью невозможен. Максимально возможная точность 13
25 13 49.7359197162173
83 5 548.20920
113.42 3 1 023.692
12 345 678 3 Вывод с заданной точностью невозможен. Максимально возможная точность 1
12 345 678 1 12 128 861 224 697.9
1 000 000 000 0 Число содержит больше 15 значащих цифр. Точный вывод невозможен

Алгоритм

Перед нами была поставлена задача вычислить площадь круга при условии, что известна длина окружности. Так как в условии не оговорена точность вычислений, выводить результат будем с количеством знаков после запятой, которое задано пользователем.

Для удобства преобразуем известные нам формулы:

[latex]L = 2 \pi \cdot R[/latex]   [latex]S = \pi \cdot R^2 [/latex]  [latex] \longrightarrow[/latex]  [latex]R= \frac{L}{2\pi}[/latex]  [latex]\longrightarrow[/latex]  [latex]S = \frac{L^2}{4\pi}[/latex];

Воспользовавшись данной формулой находим искомую величину. Однако реализуя вывод с заданной точностью, требуется проверить сможет ли используемый нами тип данных double его обеспечить. Принимая во внимание факт, что данный тип хранит не более чем [latex]15[/latex] значащих десятичных цифр осуществляем следующую последовательность действий:

  1. Находим значение переменной possibleAccuracy как разность между максимально возможным количеством значащих цифр (maxAccuracy = [latex]15[/latex]) и имеющемся в данном числе .
  2. Отрицательное значение переменной possibleAccuracy сигнализирует о том, что найденная площадь круга превышает [latex] 10^{15} [/latex]. Следовательно, выводим предупреждение о том, что точный подсчет невозможен даже с нулевой точностью после запятой.
  3. При условии, что запрашиваемая точность превышает максимальную, выводим уведомление и значение максимальной точности.
  4. При ложности  пункта 2 и 3, используя манипулятор setprecision, выводим нужное количество знаков.

Код программы:

 

Код программы

Related Images:

А119б

Задача.  Вычислить бесконечную сумму с заданной точностью [latex]\varepsilon(\varepsilon >0)[/latex]. Считать, что требуемая точность достигнута, если несколько первых слагаемых и очередное слагаемое оказалось по модулю меньше, чем [latex]\varepsilon[/latex], это и все последующие слагаемые можно уже не учитывать. Вычислить:

[latex]\sum_{i=1}^{\infty}{\frac{1}{i(i+1)}}[/latex].

Тесты:

[latex]\varepsilon[/latex] s Комментарий
0.035 0.800 Пройден
0.085 0.667 Пройден
0.025 0.833 Пройден
Решение:

С помощью цикла подсчитываем сумму.

С работой программы можно ознакомиться здесь.

Related Images: