Постановка задачи
MLoop16.
Вычислите с точностью [latex]\epsilon[/latex] значение функции [latex]f\left( x \right) = \frac{\sin 2x}{x}[/latex]. При вычислениях допустимо использовать только арифметические операции.
Алгоритм решения
Разложим [latex]g \left( x \right) = \sin x[/latex] по формуле Тейлора с опорной точкой [latex]x_0 = 0[/latex] и остаточным членом в форме Лагранжа:
[latex]g \left( x \right) = P_n \left( x_0 ; x \right) + R_n \left( x_0 ; x \right)[/latex],
[latex]P_n \left( x_0 ; x \right) = g \left( x_0 \right) + \sum_{k = 1}^{n} \frac{g^{\left( k \right)} \left( x_0 \right) }{k!} \left( x — x_0 \right) ^k[/latex],
[latex]R_n \left( x_0 ; x \right) = \frac{g^{\left( n + 1 \right)} \left( \xi \right)}{\left( n + 1 \right) !}\left( x — x_0 \right) ^{n + 1} , x_0 < \xi < x[/latex].
Найдем производные [latex]g \left( x \right)[/latex]:
[latex]g’ \left( x \right) = \cos x = \sin \left( x + \frac{\pi}{2} \right)[/latex],
[latex]g» \left( x \right) = \cos \left( x + \frac{\pi}{2} \right) = \sin \left( x + 2 \frac{\pi}{2} \right)[/latex],
[latex]g»’ \left( x \right) = \cos \left( x + 2 \frac{\pi}{2} \right) = \sin \left( x + 3 \frac{\pi}{2} \right)[/latex],
[latex]\cdots[/latex]
[latex]g^{\left( k \right)} \left( x \right) = \cos \left( x + \left( k — 1 \right) \frac{\pi}{2} \right) = \sin \left( x + k \frac{\pi}{2} \right)[/latex].
Вычислим значение функции и ее производных в точке [latex]x_0[/latex]:
[latex]g \left( x_0 \right) = \sin x_0 = \sin 0 = 0[/latex],
[latex]g’ \left( x_0 \right) = \sin \left( x_0 + \frac{\pi}{2} \right) = \sin \frac{\pi}{2} = 1[/latex],
[latex]g» \left( x_0 \right) = \sin \left( x_0 + 2 \frac{\pi}{2} \right) = \sin \pi = 0[/latex],
[latex]g»’ \left( x_0 \right) = \sin \left( x_0 + 3 \frac{\pi}{2} \right) = \sin \frac{3 \pi}{2} = -1[/latex],
[latex]\cdots[/latex]
[latex]g ^{ \left( 2k — 1 \right) } \left( x_0 \right) = \sin \left( x_0 + \left( 2k — 1 \right) \frac{\pi}{2} \right) = \sin \left( \pi k + \frac{\pi}{2} \right) = \left( -1 \right) ^{k — 1}[/latex],
[latex]g ^{ \left( 2k \right) } \left( x_0 \right) = \sin \left( x_0 + 2k \frac{\pi}{2} \right) = \sin \pi k = 0[/latex].
Тогда
[latex]P_n \left( x_0 ; x \right) = \sum_{k = 1}^{ \lceil \frac{n}{2} \rceil } \frac{ \left( -1 \right) ^{k — 1} \cdot x^{2k — 1} }{ \left( 2k — 1 \right) ! }[/latex],
[latex]R_n \left( x_0 ; x \right) = \frac{\sin \left( \xi + \left( n + 1 \right) \frac{\pi}{2} \right) \cdot x ^{n + 1} }{ \left( n + 1 \right) ! }[/latex],
[latex]g \left( x \right) = \sum_{k = 1}^{ \lceil \frac{n}{2} \rceil } \frac{ \left( -1 \right) ^{k — 1} \cdot x^{2k — 1} }{ \left( 2k — 1 \right) ! } + \frac{\sin \left( \xi + \left( n + 1 \right) \frac{\pi}{2} \right) \cdot x ^{n + 1} }{ \left( n + 1 \right) ! }[/latex],
[latex]f \left( x \right) = \frac{ g \left( 2x \right) }{ x } = \sum_{k = 1}^{ \lceil \frac{n}{2} \rceil } \frac{ \left( -1 \right) ^{k — 1} \cdot \left( 2x \right) ^{2k — 1} }{ x \cdot \left( 2k — 1 \right) ! } + \frac{\sin \left( \xi + \left( n + 1 \right) \frac{\pi}{2} \right) \cdot \left( 2x \right) ^{n + 1} }{ x \cdot \left( n + 1 \right) ! }[/latex].
Осталось найти такое [latex]n \in \mathbb{N}[/latex], чтобы выполнялось неравенство
[latex]\left| \frac{\sin \left( \xi + \left( n + 1 \right) \frac{\pi}{2} \right) \cdot \left( 2x \right) ^{n + 1} }{ x \cdot \left( n + 1 \right) ! } \right| \le \left| \frac{ \left( 2x \right) ^ {n + 1} }{ x \left( n + 1 \right) ! } \right| < \epsilon[/latex].
Для ускорения вычислений зададим реккурентную формулу для слагаемых суммы
[latex]\sum_{k = 1}^{ \lceil \frac{n}{2} \rceil } \frac{ \left( -1 \right) ^{k — 1} \cdot \left( 2x \right) ^{2k — 1} }{ x \cdot \left( 2k — 1 \right) ! }[/latex].
Представим каждое слагаемое суммы в виде
[latex]\alpha_k = \alpha_{k — 1} \cdot b_k = \frac{ \left( -1 \right) ^{k — 1} \cdot \left( 2x \right) ^{2k — 1} }{ x \cdot \left( 2k — 1 \right) ! }[/latex].
Выразим [latex]b_k[/latex]:
[latex]b_k = \frac{ \alpha_k }{ \alpha_{ k — 1 } } = \frac{ \left( -1 \right) ^ {k — 1} \cdot \left( 2x \right) ^ {2k — 1} \cdot x \left( 2 \left( k — 1 \right) — 1 \right) ! }{ x \left( 2k — 1 \right) ! \cdot \left( -1 \right) ^ { \left( k — 1 \right) — 1 } \cdot \left( 2x \right) ^ {2 \left( k — 1 \right) — 1} } = — \frac{4x^2}{\left( 2k — 2 \right) \left( 2k — 1 \right)}[/latex].
Тогда
[latex]\alpha_k = \begin{cases} 2 & k = 1, \\ \alpha_{k-1} \cdot b_k & k > 1. \end{cases}[/latex]
Тесты
Входные данные |
Выходные данные |
[latex]x[/latex] |
[latex]\epsilon[/latex] |
[latex]f\left( x \right) = \frac{\sin 2x}{x} + \lambda, \lambda\in\left( -\epsilon;\epsilon \right)[/latex] |
[latex]\frac{5\pi}{2}[/latex] |
[latex]0[/latex] |
[latex]\frac{2}{5\pi}[/latex] |
[latex]\pi[/latex] |
[latex]0.01[/latex] |
[latex]0[/latex] |
[latex]0[/latex] |
[latex]0.1[/latex] |
[latex]\emptyset[/latex] |
Реализация
ideone: ссылка
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
|
#include <iostream> using namespace std; double abs(double argument) { return argument >= 0 ? argument : -argument; } int ceil(double argument) { int result = (int) argument; if((double) result != argument && argument > 0) { result++; } else if((double) result == argument && argument < 0) { result++; } return result; } int determineOrderOfPolynomial(double argument, double accuracy) { int order = 1; double a = 2 * argument; while(abs(a) >= accuracy) { order++; a *= 2 * argument / (order + 1); } return order; } double function(double argument, double accuracy) { int order = determineOrderOfPolynomial(argument, accuracy); double summand = 2; double sum = summand; for(int k = 2; k <= ceil(order / 2.0); k++) { summand *= -4 * argument * argument / ((2 * k - 2) * (2 * k - 1)); sum += summand; } return sum; } int main() { double argument, accuracy; cin >> argument >> accuracy; if(argument == 0) { cout << "empty set"; } else { cout << function(argument, accuracy); } cout << endl; return 0; } |
Related Images:
Для отправки комментария необходимо войти на сайт.