e-olymp 446. Ровные делители

Задача

Натуральное число [latex] m [/latex] называется ровным делителем числа [latex] n [/latex], если частное и остаток от деления [latex] n [/latex] на [latex] m [/latex] равны. По заданному натуральному числу [latex] n [/latex] найти количество его ровных делителей.

Входные данные

Натуральное число [latex] n (1 ≤ n ≤ 10^{6}) [/latex].

Выходные данные

Выведите искомое количество ровных делителей числа [latex] n [/latex].

Тесты

Входные данные Выходные данные
5 1
20 2
200 6
653 1
5982 4

Код программы

Решение

Для решения этой задачи сперва введем переменную q, в которой будем хранить количество ровных делителей числа [latex] n [/latex]. Затем запустим цикл, который будет проверять каждое из чисел от [latex] 1 [/latex] до [latex] n [/latex] включительно, является ли оно ровным делителем. Если условие выполняется, то увеличиваем значение, хранящееся в q на единицу. После цикла выведем искомое на экран.

Ссылки

Условие задачи на e-olymp
Код решения на Ideone

Добавить комментарий