e-olymp 845. Открытка и конверт

Задача

Даны размеры прямоугольных открытки и конверта. Требуется определить, поместится ли открытка в конверт.

Входные данные

В первой строке находятся размеры открытки, во второй — размеры конверта. Размеры открытки и конверта — целые положительные числа, не превосходящие $100.$

Выходные данные

Если открытку можно вложить в конверт, вывести $Possible,$ если нет — вывести $Impossible$.

Тесты

Входные данные Выходные данные
1 1 10
9 9
Possible
2 20 40
2 4
Possible
3 50 20
40 40
 Impossible
4 10 4
5 5
 Impossible

Код программы

Решение

Объявляем и вводим переменные $H$, $W$, $h$, $w$, где будем хранить длины открыток и конверта.
Потом находим наибольшую сторону конверта и открытки , найдем диагональ конверта.
Используя тернарную операцию сравниваем длины открытки и конвертов (максимальные) и также длины диагоналей и выводим правильный результат.

Ссылки

ideone

e-olymp

e-olymp 75. Пираты и монеты

Задача

[latex]n[/latex] пиратам удалось справедливо разделить клад из [latex]m[/latex] золотых монет — каждый получил свою часть согласно своему пиратскому рангу и стажу. Самый молодой пират взял [latex]a[/latex] монет, а каждый следующий пират брал на одну монету больше, чем предыдущий его коллега. Последним был капитан, которому досталось вдвое больше от запланированного, очевидно, что после него монет больше не осталось.

Сколько было пиратов вместе с капитаном, если известны [latex]a[/latex] и [latex]m[/latex]. Так как капитан без команды просто пират, то [latex]n > 1[/latex].

Входные данные

Два натуральных числа [latex]a[/latex] и [latex]m[/latex] ([latex]1 ≤ a ≤ 100, m < 15150[/latex]). Входные данные корректны.

Выходные данные

Количество пиратов [latex]n[/latex].

Тесты

 #  ВХОДНЫЕ ДАННЫЕ  ВЫХОДНЫЕ ДАННЫЕ
 1  5 25  3
 2  3 24  4
 3  4 38  5
 4  5 55  6
 5  6 75  7

Код программы

Решение задачи

Это задача решается с помощью алгебраической прогрессии. Мы создаем цикл , который будет работать пока не поступит команда break. И в этот цикл помещаем условные операторы. Первый определяет когда очередь дошла до капитана , второй считает количество пиратов в команде.

Ссылки

 

e-olymp 1623. Чётные и нечётные числа

Задача

Дано три целых числа $a$, $b$, $c$. Определить, есть ли среди них хотя бы одно чётное и хотя бы одно нечётное число.

Входные данные

Числа $a$, $b$, $c$, не превышающие по модулю $10000$ (числа могут быть отрицательными).

Выходные данные

Вывести «YES» или «NO».

Тесты

# Входные данные Выходные данные
1 3 4 5 YES
2 7 7 7 NO
3 2 3 50 YES
4 -1 -3 5 NO
5 10 5 -2 YES

Код решения

Решение

Проверяем, есть ли среди введенных чисел хотя бы одно четное и хотя бы одно нечетное. При выполнении обоих условий, выводим «YES», в другом случае «NO».

e-olymp 8523. Окружность

Задача взята с сайта e-olymp

Условие

Задан радиус окружности [latex]r[/latex]. Найдите длину окружности и ее площадь.

Входные данные

Радиус окружности [latex]r (r >0)[/latex], являющийся действительным числом.

Выходные данные

Вывести в одной строке длину окружности и ее площадь с [latex]4[/latex] десятичными знаками.

Тесты

Inputs Outputs
1 1.234 7.7535
4.7839
2 3.5 7.7535
4.7839
3 0 0.0000
0.0000
4 10 62.8319
314.1539
5 313 1966.6370
307778.6907

Код

Решение

По известным формулам длины окружности [latex]l = 2\pi r[/latex] и площади окружности [latex]S = \pi r^{2}[/latex] находим их. С помощью setprecison() выводим числа с нужной нам точностью.

Ссылки

e-olymp 7943. Периметр прямоугольника

Задача:

Найдите периметр прямоугольника.

Входные данные:

Целочисленные стороны прямоугольника [latex]a[/latex] и [latex]b\left(1\leq a, b\leq 1000\right)[/latex]

Выходные данные:

Выведите периметр прямоугольника.

Тесты:

Входные данные Выходные данные
1 1 4
1000 1000 4000
10 20 60
12 13 50
176 37 426

Решение:

Объяснение: Поскольку стороны прямоугольника, используемые в задаче, целочисленные, и каждое из них меньше [latex]1000[/latex] то переменные создаём типа int. Для решения этой задачи воспользуемся формулой нахождения периметра прямоугольника: [latex] (a+b) \cdot 2 [/latex]

e-olymp 8531. Делимость на числа

Задача

Задано натуральное число [latex]n.[/latex] Делится ли оно одновременно на [latex] a\ [/latex] и на [latex] b?[/latex]?

Входные данные

Три натуральных числа [latex] n, a, b,[/latex] не больших [latex] 10^{9}.[/latex]

Выходные данные

Выведите «YES» если [latex] n\ [/latex] делится одновременно на [latex] a\ [/latex] и на [latex] b\ [/latex]. Выведите «NO» иначе.

Тесты

Ввод Вывод
1 12 4 6 YES
2 10 5 6 NO
3 1056 22 6 YES
4 98 103 5 NO

Решение

Проверим делимость [latex] n\ [/latex] на [latex] a\ [/latex] и [latex] b.[/latex] Число $n$ делится одновременно на $a$ и $b$ тогда, когда и остаток от деления $n$ на $a$ равен $0$ ( n % a == 0), и остаток от деления $n$ на $b$ равен $0$ ( n % b == 0).

Код с ветвлением

Код без использования ветвления

 

Ссылки

e-olymp 8372. Составить треугольник

Задача взята с сайта e-olymp

Задача

По заданным длинам трех отрезков определить, можно ли из них составить невырожденный треугольник. Треугольник называется невырожденным, если его площадь больше 0.

Входные данные

Три натуральных числа $a, b, c (1 ≤ a, b, c ≤ 1000)$ — длины трех отрезков.

Выходные данные

Вывести YES если из отрезков можно составить невырожденный треугольник и NO в противном случае.

Тесты

# ВХОДНЫЕ ДАННЫЕ ВЫХОДНЫЕ ДАННЫЕ
1 5 6 7 YES
2 3 7 4 NO
3 16 24 32 YES
4 54 1 100 NO
5 1 1 1 YES

Код программы (Ветвление)

Код программы (Линейные вычисления)

Решение задачи

Пусть $a, b, c$ – длины трех отрезков. Из них можно составить невырожденный треугольник, если длина каждых двух отрезков больше длины третьего (это условие известно как неравенство треугольника): | $b$ | < | $a$ | + | $c$ | \begin{cases} b + c > a\\a + c > b\\a + b > c\end{cases}

Ссылки

Условие задачи на e-olymp

Код программы на ideone (Линейные вычисления)

Код программы на ideone (Ветвление)

e-olymp 4718. Привет, Гарри!

Задача взята с сайта e-olymp

Задача

Напишите программу, которая приветствует пользователя, выводя слово Hello, имя пользователя и знаки препинания в следующем виде: Hello, Harry

Входные данные

В единственной строке вводится имя пользователя.

Выходные данные

В первой строке выведите приветствие.

Тесты

# ВХОДНЫЕ ДАННЫЕ ВЫХОДНЫЕ ДАННЫЕ
1 Harry Hello, Harry
2 Peter Hello, Peter
3 Emily Hello, Emily
4 Anna-Maria Hello, Anna-Maria
5 Zhao Yun Hello, Zhao Yun

Код

Решение

Для того, чтобы задать переменную-строку, воспользуемся библиотекой string. Далее, введём переменную, к примеру name (имя). В строке вывода зададим неизменную часть фразы Hello, и саму переменную.

Ссылки

ideone
e-olymp

e-olymp 1610. Зайцы в клетках

Задача взята с сайта e-olymp

Задача

Всем известен, так называемый, принцип Дирихле, который формулируется следующим образом:

Предположим, что некоторое число кроликов рассажены в клетках. Если число кроликов больше, чем число клеток, то хотя бы в одной из клеток будет больше одного кролика.

В данной задаче мы рассмотрим более общий случай этого классического математического факта. Пусть имеется [latex]n[/latex] клеток и [latex]m[/latex] зайцев, которых рассадили по этим клеткам. Вам требуется расcчитать максимальное количество зайцев, которое гарантированно окажется в одной клетке.

Входные данные

В одной строке заданы два натуральных числа [latex]n[/latex] и [latex]m[/latex] (1[latex]n[/latex], [latex]m[/latex] ≤ [latex]\ 10^{9}[/latex]).

Выходные данные

Максимальное количество зайцев, которое гарантированно окажется в одной клетке.

Тесты

# Входные данные Выходные данные
1 3 4 2
2 15 144 10
3 1 7 7
4 100 123456 1235
5 222 222 1

Код

Решение

Распределяя всех [latex] m [/latex] зайцев равномерно по клеткам [latex] n [/latex] получаем что максимальное количество зайцев в одной клетке равно [latex]\lceil \frac{m}{n}\rceil[/latex]

Ссылки

ideone
e-olymp

e-olymp 7367. Спортсмен

Задача

Спортсмен в первый день пробежал 10 км. Каждого следующего дня он увеличивал норму на 10% от нормы предыдущего дня. Опредилить через какое найменьшее количество дней спортсмен пробежит сусмарный путь не меньший чем [latex]N[/latex] км.

Входные данные

Целое число [latex]N (0 < N≤ 1000)[/latex].

Выходные данные

Единственное число – количество дней.

Тесты

# ВХОДНЫЕ ДАННЫЕ ВЫХОДНЫЕ ДАННЫЕ
1 9 1
2 45 4
3 324 16
4 1234 28
5 213213123 153

Код программы №1 (с использованием цикла):

Решение задачи:

Сначала вводим 4 переменные: [latex] k=1 [/latex] ( количество дней ), [latex] T=10 [/latex] ( количество километров которое спортсмен пробежал ), [latex] N [/latex] ( количество километров которое спортсмен должен пробежать ) и [latex] S [/latex] ( количество километров которое спортсмен пробегает в день ). Цикл каждый раз будет прибавлять к расстоянию которое пробежал спортсмен, количество километров которое спортсмен должен пробежать в течение следующего дня, с учетом того, что каждый день он будет пробегать на [latex] 10 [/latex] процентов больше, чем в прошлый день, параллельно увеличивая количество дней, пока [latex] N [/latex] будет больше [latex] T [/latex]. Если же [latex] N [/latex] при вводе изначально будет меньше [latex] T [/latex], то программа выведет, что спортсмену достаточно одного дня.

  • Время срабатывания программы при [latex]N = 1000[/latex] : [latex]65[/latex] [latex]ms[/latex]

 

Ссылки

  • Задача на сайте e-olymp
  • Код решения в Ideone

Код программы №2(с использованием линейных вычислений):

Решение задачи:

Также данную задачу можно решить с помощью формулы геометрической прогрессии [latex]S=\frac{b_1(q^n-1)}{q-1}[/latex] из которой нам нужно будет выразить степень [latex] n [/latex] через логарифм при условии того, что по условию задачи мы знаем, что [latex] q=1.1 [/latex] и [latex] b_1=1 [/latex]. И мы получаем, что [latex] \left(n=\log_{1.1}\left(\frac{s}{100}+1\right)\right) [/latex]. При записи логарифма по основанию в С++ мы пользуемся основным свойством логарифмов: [latex] \log_{a}\left(b\right)=\frac{\log_{c}\left(b\right)}{\log_{c}\left(a\right)} [/latex]. Также используем функцию сeil, которая округлит выходное число вверх, до ближайшего целого. ( [latex] S [/latex] — количество километров, которое должен пробежать спортсмен ).

  • Время срабатывания программы при [latex]N = 1000[/latex] : [latex]76[/latex] [latex]ms[/latex]

Ссылки

e-olymp 1474. Сломанные часы

Задача

В электронных часах произошел сбой, и теперь каждую секунду увеличивается не счетчик секунд, а счетчик часов. При переполнении счетчика часов (то есть при достижении [latex]24[/latex]) он сбрасывается в [latex]0[/latex] и увеличивается счетчик минут. Аналогично, при переполнении счетчика минут происходит его сброс и увеличивается счетчик секунд. При переполнении счетчика секунд он также сбрасывается в [latex]0[/latex], а остальные счетчики так и остаются равными [latex]0[/latex]. Известно, что сбой произошел в [latex]h_1[/latex] часов [latex]m_1[/latex] минут [latex]s_1[/latex] секунд. В этот момент часы показывали правильное время.

Напишите программу, определяющую по показаниям сломанных часов правильное время.

Входные данные

В первой строке задаются три целых числа [latex]h_1[/latex], [latex]m_1[/latex], [latex]s_1[/latex], определяющие время поломки часов. Во второй строке записаны три числа [latex]h_2[/latex], [latex]m_2[/latex], [latex]s_2[/latex], которые определяют показания часов в текущий момент времени ( [latex]0\;\le\;h_1,\;h_2\;\lt\;24[/latex], [latex]0\;\le m_1,\;m_2,\;s_1,\;s_2\;\lt\;60[/latex] ).

Выходные данные

В единственной строке выведите правильное время (т.е. число часов, минут и секунд) в момент, когда сломанные часы будут показывать [latex]h_2[/latex] часов [latex]m_2[/latex] минут [latex]s_2[/latex] секунд.

Тесты

Входные данные Выходные данные
[latex]12 \; 0 \; 0\\12 \; 1 \; 0[/latex] [latex]12 \; 0 \; 24[/latex]
[latex]13 \; 59 \; 59\\12 \; 59 \; 59[/latex] [latex]13 \; 59 \; 58[/latex]
[latex]15 \; 12 \; 16\\15 \; 12 \; 16[/latex] [latex]15 \; 12 \; 16[/latex]
[latex]\;0 \;\;\; 0 \;\;\; 0\\23 \; 59 \; 59[/latex] [latex]23 \; 59 \; 59[/latex]
[latex]16 \; 0 \; 17\\16 \; 0 \; 18[/latex] [latex]16 \; 24 \;17[/latex]
[latex]11 \;\; 0 \;\; 53\\0 \;\;\; 0 \;\;\; 0[/latex] [latex]13 \; 48 \; 42[/latex]
[latex]1 \;\; 13 \; 18\\22 \; 51 \; 32[/latex] [latex]7 \;\;\; 4 \;\;\; 51[/latex]

Код программы

 

Решение

Учитывая особенности хода сломанных часов, подсчитаем количество секунд в начальный и конечный моменты времени ( sum1 и sum2). Вычислим, сколько секунд прошло с момента поломки часов — для этого найдём разность sum2 - sum1, прибавим [latex]86400[/latex] —  количество секунд в сутках (поскольку мог произойти переход через момент времени [latex]0 \; : \; 0 \; : \; 0[/latex]) и найдём остаток от деления полученной суммы на [latex]86400[/latex].

Теперь найдём количество секунд, прошедших с начала суток, в которых поломались часы ( time1). Прибавим к нему количество секунд, прошедших с момента поломки часов и найдём остаток от деления на [latex]86400[/latex] полученного числа. Имеем time2 — правильное время в секундах. Далее, находим значения счётчиков часов [latex]h_3[/latex], минут [latex]m_3[/latex] и секунд [latex]s_3[/latex] которые соответствуют моменту времени time2.

Ссылки

Условия задачи на e-olymp
Код задачи на ideone

e-olymp 51. К-домино

Задача

ДоминоРаботник отдела технического контроля любил выбраковывать «доминошки», которые содержали одинаковые значения. Так как на предприятии, выпускающем [latex]K[/latex]-домино, этого не знали, к нему постоянно поступали претензии на сумму, равную стоимости [latex]K[/latex]-домино. Стоимость [latex]K[/latex]-домино составляла ровно столько гривен, сколько было в купленном покупателем наборе доминошек.Для того, чтобы его не уволили с работы, работник ОТК выбраковывал иногда не только все не любимые «доминошки», а несколько больше, но не более половины гарантированно выбраковыванных.Зная сумму претензии, пришедшей на предприятие, установите, какой из наборов [latex]K[/latex]-домино был куплен покупателем.

Входные данные

Единственное число [latex]S[/latex] – сумма претензии, пришедшей на предприятие, [latex]S ≤ 2000000000[/latex].

Выходные данные

Единственное число – индекс [latex]K[/latex] купленного покупателем [latex]K[/latex]-домино.

Входные данные Выходные данные
1 5 3
2 10 4
3 1000000 1414
4 555666777888 1054198
5 13 5

Код программы

Решение

[latex]K[/latex]-домино — набор домино с минимальным количеством точек на одной из половин доминошки.
Количество дублей, то есть количество точно выбракованных доминошек — [latex]k[/latex]+1. Общее количество доминошек [latex]k[/latex]-домино:$$(k+1){{k+2}\over{2}}$$
Пусть работник дополнительно выбраковывал [latex]e[/latex] доминошек. [latex]s[/latex] — сумма претензии, тогда имеем:

[latex]k+1+e+s= (k+1){{k+2}\over{2}}[/latex]

[latex]k^2<=2s+1[/latex]

[latex]k=[\sqrt{2s+1}][/latex]

Ссылки

Ссылка на e-olymp.
Ссылка на Ideone

e-olymp 7612. Алекс и квадраты оригами

Задача

Алекс любит оригами — японское искусство складывания из бумаги. Большинство конструкций оригами начинаются с квадратного листа бумаги. Алекс собирается сделать подарок для своей матери. Подарочная конструкция требует три одинаковых квадратных листа бумаги, но у Алекса имеется только один прямоугольный лист. Он может из него вырезать квадраты, стороны которых должны быть параллельны сторонам листа. Помогите Алексу определить максимально возможный размер квадратов, который он способен вырезать.

Входные данные

В одной строке два целых числа [latex]h[/latex] и [latex]w[/latex] ([latex]1 ≤ h, w ≤ 1000[/latex]) — высота и ширина куска бумаги.

Выходные данные

Выведите одно действительное число — наибольшую длину стороны квадратов. Всегда можно вырезать три одинаковых квадрата из листа бумаги размером [latex]h × w[/latex] так, чтобы их стороны были параллельны сторонам листа.

Ответ следует вывести с точностью не меньше трех десятичных знаков.

Тесты

Входные данные Выходные данные
$100$ $100$ $50.000$
$10$ $80$ $10.000$
$50$ $76$ $25.333$
$60$ $27$ $20.000$
$8$ $3$ $2.667$

Код программы

Решение задачи

Существует два варианта оптимального расположения трех квадратов — три в один ряд,

или же два, соприкасающихся одной стороной, и третий над ними

Обозначим за [latex]a[/latex] меньшую сторону листа бумаги, а за [latex]b[/latex] — большую. Если [latex]a[/latex] не больше [latex]\frac{b}{3}[/latex], то оптимальным расположением квадратов в прямоугольнике будет первый вариант, а наибольшей возможной стороной квадратов является меньшая сторона листа бумаги [latex]a[/latex]. В противном случае рассмотрим два варианта:

  1. Если [latex]\frac{a}{2}<\frac{b}{3}[/latex], то квадраты будут располагаться в прямоугольнике первым способом, и ответом будет служить число [latex]\frac{a}{2}[/latex].
  2. Иначе квадраты будут располагаться в прямоугольнике вторым способом, и ответом будет служить число [latex]\frac{b}{3}[/latex].

Таким образом, в случае [latex]a>\frac{b}{3}[/latex] ответом будет служить большее из двух чисел [latex]\frac{a}{2}[/latex] и [latex]\frac{b}{3}[/latex].
Минимальное из [latex]\max\left(\frac{b}{3},\frac{a}{2}\right)[/latex] и [latex]a[/latex] число и будет ответом.
Проверим нашу формулу:если [latex]a<\frac{b}{3}[/latex], то [latex] \max\left(\frac{b}{3},\frac{a}{2}\right)=\frac{b}{3} [/latex], и тогда [latex]\min\left(a,\max\left(\frac{b}{3},\frac{a}{2}\right)\right)=a[/latex]. Иначе [latex]\min\left(a,\max\left(\frac{b}{3},\frac{a}{2}\right)\right)=\max\left(\frac{b}{3},\frac{a}{2}\right)[/latex], что нам и требуется.

Ссылки

Условие задачи на сайте E-Olymp
Код решения задачи

e-olymp 932. Высота треугольника

Задача

Определить высоту треугольника площадью [latex]S[/latex], если его основание больше высоты на величину [latex]a[/latex].

Входные данные

Два целых числа: [latex]S (0 < S ≤ 100), и[/latex] [latex]a[/latex] ([latex]\left | a \right |[/latex] ≤ 100).

Выходные данные

Искомая высота с точностью до сотых.

Тесты

# Входные данные Выходные данные
1 20 7 3.73
2 35 3 7.00
3 12 4 3.29
4 67 9 7.92
5 135 13 11.17

Код программы

Алгоритм решения задачи

  1. Формула для вычисления площади треугольника [latex]S=[/latex][latex]\frac{1}{2}\cdot h \cdot c[/latex], где [latex]h[/latex] – высота, а [latex]c[/latex] – сторона, к которой высота проведена.
  2. В задаче сказано, что основание больше высоты на величину [latex]a[/latex]. Значит вместо [latex]c[/latex] мы можем подставить в формулу [latex]h+a[/latex]. Теперь формула приобретает следующий вид: [latex]S=[/latex][latex]\frac{1}{2}\cdot h \cdot \left (h+a \right )[/latex]
  3. Cовершив некоторые преобразования приходим к квадратному уравнению [latex]h^{2}+a\cdot h-2\cdot S = 0[/latex]
  4. Далее находим дискриминант по формуле [latex]D = a^{2}+4\cdot2\cdot S[/latex]. Находим корень квадратный из дискриминанта [latex]\sqrt{D}[/latex]
  5. Находим высоту по формуле [latex]h=\frac{-a+\sqrt{D}}{2}[/latex]
  6. Второй корень нам не подходит, потому что он меньше [latex]0[/latex], а длина не может быть отрицательной.
  7. Подставляем исходные данные в формулы, получаем результат.

Также подробное описание представлено в коде программы.

Ссылки

Ссылка на e-olymp

Ссылка на ideone

e-olymp 1210. Очень просто!!!

Задача

По заданным числам [latex]n[/latex] и [latex]a[/latex] вычислить значение суммы: [latex]\sum\limits_{i=1}^{n} {i \cdot a^i}[/latex]

Входные данные

Два натуральных числа [latex]n[/latex] и [latex]a[/latex].

Выходные данные

Значение суммы. Известно, что оно не больше [latex]10^{18}[/latex].

Тесты

Входные данные Выходные данные
3 3 102
4 4 1252
9 3 250959
7 14 785923166
1009 1 509545

Код программы

Решение задачи

Данную задачу можно решить прямым линейным вычислением значений элементов заданного ряда, то есть получать значение элемента ряда с индексом [latex]i[/latex] умножением [latex]a[/latex] (которое необходимо возвести в степень [latex]i[/latex]) на индекс [latex]i[/latex] и накапливать сумму этих значений в выделенной переменной.
Но безусловно такое решение не является качественным (даже если будет использован алгоритм бинарного возведения в степень).

Для получения качественного решения распишем ряд подробно:
[latex]A[/latex] [latex]=[/latex] [latex]\sum\limits_{i=1}^{n} {i \cdot a^i}[/latex] [latex]=[/latex] [latex]a+2a^2+3a^3+\ldots+\left( n-1 \right) a^{n-1}+na^{n}[/latex] [latex]=[/latex] [latex]na^{n}[/latex] [latex]+[/latex] [latex]\left( n-1 \right)a^{n-1}[/latex] [latex]+[/latex] [latex]\ldots[/latex] [latex]+[/latex] [latex]3a^{3}[/latex] [latex]+[/latex] [latex]2a^2[/latex] [latex]+[/latex] [latex]a[/latex].
Очевидно, что из полученного выражения можно вынести [latex]a[/latex] за скобки. Применим данную операцию:
[latex]A[/latex] [latex]=[/latex] [latex] \left( na^{n-1}+\left( n-1 \right)a^{n-2}+\ldots+3a^{2}+2a+1\right) \cdot a[/latex]
Из полученной формулы видно, что аналогичное действие можно применить вновь, для внутреннего выражения [latex]na^{n-1}[/latex] [latex]+[/latex] [latex]\left( n-1 \right)a^{n-2}[/latex] [latex]+[/latex] [latex]\ldots[/latex] [latex]+[/latex] [latex]3a^{2}[/latex] [latex]+[/latex] [latex]2a[/latex]. Получим:
[latex]A[/latex] [latex]=[/latex] [latex] \left( \left( na^{n-2}+\left( n-1 \right)a^{n-3}+\ldots+3a+2 \right) \cdot a +1 \right) \cdot a[/latex].
После конечного количества вынесений за скобки, получим:
[latex]A[/latex] [latex]=[/latex] [latex]\left( \left( \ldots \left( \left(na+\left(n-1\right)\right) \cdot a + \left(n-2\right) \right) \ldots+2\right) \cdot a +1\right) \cdot a[/latex].

Таким образом, решение данной задачи сводится к вычислению суммы «изнутри» скобок.

Но из-за того, что в условии подано ограничение только на сумму, программа с реализованным вычислением суммы изнутри и асимптотикой [latex]O \left( n \right)[/latex] не пройдёт все тесты системы www.e-olymp.com в силу частного случая [latex]a = 1[/latex], так как значение [latex]n[/latex] может быть для него достаточно большим, ибо числа [latex]a[/latex] и [latex]n[/latex] компенсируют друг-друга по отношению к максимальному значению суммы. Но в случае [latex]a = 1[/latex] сумма данного ряда является суммой арифметической прогрессии, а именно — натурального ряда. Для вычисления этой суммы существует формула [latex]\sum\limits_{i=1}^{n} {i} = \frac{n \left( n+1 \right)}{2}[/latex]. Этот частный случай легко отсеять.

Асимптотика программы: [latex]const[/latex] при [latex]a = 1[/latex], и [latex]O \left( n \right)[/latex] иначе.

Ссылки

e-olymp 112. Торт

В честь дня рождения наследника Тутти королевский повар приготовил огромный праздничный торт, который был подан на стол Трем Толстякам. Первый толстяк сам мог бы целиком его съесть за $t_1$ часов, второй — за $t_2$ часов, а третий — за $t_3$ часов.

Сколько времени потребуется толстякам, чтобы съесть весь праздничный торт вместе?

Входные данные

Единственная строка содержит три целых неотрицетельных числа $t_1$, $t_2$ и $t_3$, каждое из которых не превосходит $10000$.

Выходные данные

Вывести время в часах, за которое толстяки вместе могут съесть торт. Результат округлить до двух десятичных знаков.

TESTS

$t_1$

$t_2$

$t_3$

$t$

3 3 3 1.00
4 67 50 3.51
228.22 8 2.28 1.76
1577 157.7 15.77 14.21

C ветвлением:

Без ветвления:

 

Решение с ветвлением

Первый толстяк ест со скоростью один торт за $t_1$ часов. Аналогично и с остальными толстяками. Тогда из торта следует вычесть те части, которые съест каждый, чтобы торта не осталось. Получается уравнение
$1-\frac{t}{t_1}-\frac{t}{t_2}-\frac{t}{t_3}=0;$
$\frac{t}{t_1}+\frac{t}{t_2}+\frac{t}{t_3}=1;$
$\frac{tt_2t_3+tt_1t_3+tt_1t_2}{t_1t_2t_3}=1;$
$t\left(t_1t_2+t_2t_3+t_1t_3\right)=t_1t_2t_3;$
$t = \frac{t_1t_2t_3}{t_1t_2+t_2t_3+t_1t_3};$
Рассматриваем случай, при котором одна из переменных равна нулю, тогда выводим ноль. В противном случае выводим значение $t$ с округлением до сотых.

Решение без ветвления

Так как по условию задачи первый толстяк съедает весь торт за $t_1$ часа, второй — за $t_2$ часа и третий — за $t_3$ часа, то их скорость поедания торта составит $\frac{1}{t_1}$, $\frac{1}{t_2}$ и $\frac{1}{t_3}$ торта в час соответсвенно. Если толстяки будут есть торт одновременно, то в час они будут съедать $\left(\frac{1}{t_1}+\frac{1}{t_2}+\frac{1}{t_3}\right)$ часть торта. Тогда весь торт будет съеден за $\frac{1}{\frac{1}{t_1}+\frac{1}{t_2}+\frac{1}{t_3}}$ часов.
Затем нужно вывести результат, округлённый до двух десятичных знаков. Для этого воспользуемся функцией setprecision() и её аргументом fixed

Ссылки

Условие задачи e-olymp
Код решения

e-olymp 3604. Крейсерская скорость

Задача

Выдающийся ямайский спринтер Усейн Болд выиграл на Олимпиаде-2012 две золотые медали на дистанциях 100 и 200 метров.

Эти обе дистанции нам интересны тем, что могут при определённом научном подходе, предоставлять тренеру информацию в определении оптимального состава сборной команды страны для эстафеты 4×100 метров.

Так как обе дистанции очень коротки, то тактика бега здесь довольно проста: сначала спортсмен за какое-то стартовое время (время разгона) разгоняется до своей максимально возможной на данный момент скорости, а оставшуюся часть дистанции бежит с этой постоянной скоростью, которую назовём крейсерской скоростью. Естественно, что при формировании команды в эстафету нужно на старт ставить спортсмена, который на этой дистанции показывает наилучшее время, а на 3 оставшихся этапа отбирать из числа оставшихся спортсменов трёх с наилучшей крейсерской скоростью.

Тренер легкоатлетической сборной вашей страны поручил вам, как одному из лучших программистов, помочь ему с формированием состава сборной на эстафету. Для оказания оперативной помощи тренеру вам необходимо быстро решить следующую задачу: зная результаты спортсмена на дистанциях 100 и 200 метров, определить его крейсерскую скорость. Вам также известно, что крейсерская скорость и время разгона каждого из спортсменов на протяжении ваших исследований не изменялись.

Входные данные

В единственной строке задано 2 вещественных числа, разделённых единичным пробелом, соответственно результат спортсмена на дистанциях 100 и 200 метров.

Выходные данные

В единственной строке выведите крейсерскую скорость спортсмена с точностью не менее 6-ти знаков после запятой.

Тесты

Входные данные Выходные данные
9.63  19.32 10.319917
12.49  21.30 11.350737
7.46  13.58 16.339869

Код программы:

Решение задачи

Для решения этой задачи мы воспользуемся формулами скорости при равноускоренном движении. Нам было дано время прохождения двух дистанций в 100 метров и 200 метров. Так как спортсмен разгоняется на дистанции 100 метров, то оставшиеся 100 метров из 200 он бежит с постоянной скоростью. Чтобы узнать время за которое он пробегает вторые 100 метров, мы вычитаем из второго значения времени первое. Дальше мы пользуемся формулой нахождения скорости по расстоянию и времени [latex]\frac{s}{t}[/latex]. Полученая скорость и будет крейсерской скоростью.

Ссылки

  • Задача на сайте e-olymp
  • Код решения в Ideone

e-olymp 7460. Поездка на экскурсию

Задача

Ученики 10-Б класса на осенние каникулы решили поехать на экскурсию в столицу. Зная количество мальчиков [latex]n[/latex] и девочек [latex]m[/latex], определить, сколько необходимо заказать комнат в отеле, в котором имеются комнаты на [latex]k[/latex] мест каждая, при условии что мальчиков и девочек поселять вместе запрещено.

Входные данные

В одной строке записаны три числа [latex]n[/latex], [latex]m[/latex], [latex]k[/latex] ([latex]n, m, k ≤ 100[/latex]).

Выходные данные

Вывести одно число — количество комнат, которое необходимо забронировать в отеле.
Continue reading

e-olimp 57. Бабочка-санитар

Задача

e-olimp 57. Бабочка-санитар

e-olimp 57. Бабочка-санитар


Школьники, идя из дому в школу или наоборот — со школы домой, любят кушать конфеты. Но, как всегда, это приятное дело иногда имеет неприятные последствия – детки часто выбрасывают обертки на школьном дворе.
Мурзик всегда следил за чистотой школьного двора и ему в этом с радостью помогали бабочки, благодарные за прекрасные фотографии, сделанные им. Бабочки могли использовать собственные крылышки как линзы, причем они могли изменять их фокусное расстояние. Заметив обертку от конфетки, лежавшую на школьном дворе в точке с координатами [latex]X_1[/latex], [latex]Y_1[/latex], бабочка перелетала в точку с координатами [latex]X_2[/latex], [latex]Y_2[/latex], [latex]Z_2[/latex], расположенную на пути солнечных лучей к обертке и, изменяя фокусное расстояние своих крылышек-линз, сжигали обертку от конфеты.
Какую оптическую силу [latex]D[/latex] имели крылышки-линзы бабочки в этот момент? Continue reading

Универсальное дерево отрезков

Некоторые теоретические сведения

Обобщённое условие задач на дерево отрезков, как правило, выглядит так:
«Пусть дан моноид [latex]\left(\mathbb{G}, \circ\right)[/latex], где [latex]\mathbb{G}[/latex] — некоторое непустое множество, [latex]\circ[/latex] — ассоциативная бинарная алгебраическая операция на этом множестве, имеющая нейтральный элемент, [latex]A[/latex] — последовательность (массив) элементов из [latex]\mathbb{G}[/latex], содержащая [latex]n[/latex] элементов ([latex]n \in \mathbb{N}[/latex]; с математической точки зрения [latex]A[/latex] — вектор, построенный из элементов [latex]\mathbb{G}[/latex], или [latex]А = \left( x_{0}, x_{1}, \ldots, x_{n-1} \right) \in \mathbb{G}^{n}[/latex]).
Даётся [latex]m[/latex] ([latex]m \in \mathbb{N}[/latex]) запросов двух типов:
1) вычислить значение выражения [latex]x_{i} \circ x_{i+1} \circ \ldots \circ x_{j-1} \circ x_{j}[/latex] с заданными [latex]i[/latex], [latex]j[/latex] ([latex]0 \le i \le j \le n-1[/latex], [latex]i, j \in \mathbb{N} \cup \{ 0 \}[/latex]) и вывести его;
2) заменить значение элемента с индексом [latex]k[/latex] на [latex]y[/latex] ([latex]k \in \mathbb{N} \cup \{ 0 \}[/latex], [latex]k \le n-1[/latex], [latex]y \in \mathbb{G}[/latex]).»

Как правило, человек, впервые увидевший задачу подобного рода, решает её следующим образом: для запросов первого типа (далее — запросы значения на отрезке [latex]\left[i, j\right][/latex]) создаётся вспомогательная переменная, изначально равная нейтральному элементу моноида (к примеру, если [latex]\left( \mathbb{G}, \circ \right) = \left( \mathbb{Z}, + \right)[/latex] то нейтральным элементом относительно [latex]+[/latex] является [latex]0[/latex]), и запускается цикл на заданном отрезке, который «прибавляет» к ней новые «слагаемые», а обработка запросов из пункта 2 реализуется через простое присваивание элементу массива с заданным индексом [latex]i[/latex] значения [latex]y[/latex]. Таким образом вычислительная сложность запросов замены составляет [latex]O\left(1\right)[/latex], а запросов поиска значения на отрезке [latex]\left[i, j\right][/latex] в лучшем случае составляет [latex]O\left(1\right)[/latex], когда [latex]i = j[/latex], а в худшем [latex]O\left(n\right)[/latex], когда [latex]i = 0[/latex], [latex]j = n-1[/latex].

Дерево отрезковструктура данных, которая позволяет сбалансировать операции замены и вычисления значения на заданном отрезке до вычислительной сложности [latex]O\left(\log_{2}{n}\right)[/latex] и значительно улучшить общую сложность программы с [latex]O\left(n+n\cdot m\right) = O\left(n\cdot m\right)[/latex] до [latex]O\left(n+m\cdot\log_{2}{n}\right)[/latex].

Определение: массив/последовательность элементов/вектор, над которым построено дерево отрезков, называется базой дерева или просто базой, а число её элементов — её размерностью.

Задача 1: единичная модификация

Написать класс «дерево отрезков», применимый к любой задаче на моноиде, в которой присутствуют запросы замены элемента и результата операции на отрезке,
и таблицу его базовых функций и параметров.

Код класса


Описание класса

Далее [latex]n[/latex] — размерность базы дерева.

Название объекта Описание
Параметр
TYPE Тип объектов дерева, над которыми будут проводится вычисления.
Внутренние объекты
SegmentTree Массив, хранящий в себе дерево отрезков.
base_capacity Переменная, хранящая округлённую к ближайшей большей степени двойки размерность базы дерева отрезков.
g Указатель на функцию, которая представляет из себя ассоциативную бинарную операцию. Формально определяется как функция/операция.
neutral Нейтральный элемент относительно бинарной операции g.
Методы класса
construct

Аргументы:

  1. Адрес начала полуинтервала [latex]a[/latex];
  2. Адрес конца полуинтервала [latex]b[/latex];
  3. Ассоциативная бинарная операция f;
  4. Нейтральный элемент относительно f.

Генерирует базу на основе полуинтервала [latex]\left[a; b\right)[/latex], копируя его элементы внутрь дерева, и строит на основе этой базы дерево отрезков.
Вычислительная сложность: [latex]O\left(n\right)[/latex].

read_and_construct Аргументы:

  1. Размер базы дерева;
  2. Функция-препроцессор;
  3. Ассоциативная бинарная операция f;
  4. Нейтральный элемент относительно f.

Генерирует базу на основе элементов, возвращаемых функцией-препроцессором, и строит на их основе дерево отрезков.
Вычислительная сложность: [latex]O\left(n\right)[/latex].

assign Аргументы:

  1. Индекс элемента;
  2. Новое значение элемента.

Заменяет значение элемента с заданным индексом на новое.
Вычислительная сложность: [latex]O\left(\log_{2}{n}\right)[/latex].

result_on_segment Аргументы:

  1. Индекс левого конца отрезка;
  2. Индекс правого конца отрезка.

Возвращает результат функции на заданном отрезке.
Вычислительная сложность: [latex]O\left(\log_{2}{n}\right)[/latex].

Инструкция по применению

Прежде всего, код универсального дерева отрезков необходимо скопировать в исходную программу.

Построение:

  • Создать тип объектов (структуру данных), который будет использоваться в дереве для вычислений; (в зависимости от задачи. Вполне может быть, что необходимый для решения задачи класс уже создан. Например — int или double.)
  • Инициализировать дерево отрезков, передав классу segments_tree в качестве параметра тип объектов, над которыми будут проводиться вычисления, и задав дереву имя. (инициализация класса segments_tree происходит аналогично инициализации класса vector)
  • Построить дерево отрезков на основе заданных элементов при помощи метода construct или read_and_construct, передав методу соответствующие параметры (упомянутые в таблице выше);

Далее для вычисления результатов на отрезках и модификаций элементов с заданным индексом использовать методы result_on_segment и assign соответственно.

Пример использования

Примечание: условие и альтернативное решение приведённой ниже задачи находится по этой ссылке.

Решение задачи №4082 на www.e-olymp.com

Так как в задаче необходимо выводить знак или произведения на заданных отрезках (либо нуль), то очевидно, что сами числа не интересуют нас. Тогда каждое из них можно представить в виде пары (zero, plus)[latex]= \left(a, b\right) \in \mathbb{B}^{2}[/latex] (где [latex]\mathbb{B}[/latex] — булево множество), где первый элемент пар [latex]a[/latex] будет характеризовать равенство числа нулю, а [latex]b[/latex] — его положительность. Назовём структуру данных пар такого типа number_sign. Функция make_number_sign будет преобразовывать числа типа short в number_sign. Затем определим для этой структуры функцию умножения prod формулой prod(number_sign a, number_sign b)[latex]=[/latex] (a.zero|b.zero, !(a.plus^b.plus));. В первой части формулы используется дизъюнкция, так как произведение нуля и произвольного числа всегда должно возвращать нуль, а во второй части — эквиваленция, так как результат произведения является отрицательным, если оба аргумента различны по знаку.

Затем, предварительно считав размер базы, конструируем дерево отрезков методом read_and_construct, передавая ему число элементов базы, анонимную функцию-препроцессор, которая считывает элементы базы из входного потока и которая преобразует их в тип данных number_sign, функцию произведения prod и её нейтральный элемент number_sign(), являющийся парой [latex]\left(0, 1\right)[/latex], который по сути представляет из себя число [latex]+1[/latex] (нейтральный элемент умножения).

Остальная часть решения требует только замены старых элементов новыми и вычислений результатов на отрезках, для чего есть готовые методы класса.

Фрагмент кода


Задача 2

Дополнить класс «дерево отрезков» из первой задачи таким образом, чтобы для базы дерева были реализованы:

  • параметры «вместимость» и «размер»;
  • функции добавления нового элемента в базу;
  • функции, возвращающие размер базы и вместимость дерева;
  • функция изменения размера базы.

Написать таблицу новых функций и параметров.

Код класса

Описание дополнительных объектов класса

Название объекта Описание
Новый внутренний объект
base_size Переменная, хранящая размерность базы дерева отрезков.
Новые методы класса
begin

Аргументы: отсутствуют.
Возвращает адрес начала базы.
Вычислительная сложность: константа.

end Аргументы: отсутствуют.
Возвращает адрес конца базы.
Вычислительная сложность: константа.
push_back Аргумент: значение нового элемента базы.
Добавляет новый элемент в конец базы.
Вычислительная сложность: если база заполнена, то [latex]O\left(n\right)[/latex], иначе — [latex]O\left(\log_{2}{n}\right)[/latex].

pop_back

Аргументы: отсутствуют.
Удаляет элемент в конце базы.
Вычислительная сложность: [latex]O\left(\log_{2}{n}\right)[/latex].

insert

Аргументы:

  1. Индекс нового элемента;
  2. Значение нового элемента.

Добавляет на заданную позицию базы новый элемент с заданным значением.
Вычислительная сложность: [latex]O\left(n\right)[/latex].

erase

Аргумент: индекс удаляемого элемента.
Удаляет из базы элемент с заданным индексом.
Вычислительная сложность: [latex]O\left(n\right)[/latex].

size

Аргументы: отсутствуют.
Возвращает размерность базы дерева.
Вычислительная сложность: константа.

capacity

Аргументы: отсутствуют.
Возвращает размерность базы дерева, округлённую к ближайшей большей степени двойки. Позволяет оценить число неиспользованных ячеек, на которые уже выделена память.
Вычислительная сложность: константа.

resize

Аргумент: новый размер базы.
Изменяет размер базы дерева, и преобразовывает незадействованные элементы в нейтральные
Вычислительная сложность: [latex]O\left(n\right)[/latex], если новый размер базы превысил вместимость дерева или является меньше, чем старый, и константа в противном случае.

Ссылки