А717б

Условие

Две правые треугольные матрицы [latex] A [/latex] и [latex] B [/latex] порядка [latex] n [/latex] заданы в виде последовательности [latex] \frac{\left( n + 1 \right) n}{2}[/latex] чисел: сначала идёт [latex] n [/latex] элементов первой строки, затем [latex] n-1 [/latex] элемент второй строки, и т.д. (из последней, [latex] n [/latex] -ой строки берётся только [latex] n [/latex] -ый элемент). Нужно получить в аналогичном виде матрицу

б) [latex] A \left( I + B^{2} \right) [/latex], где [latex] I [/latex] — единичная матрица порядка [latex] n [/latex]

Тест

[latex] \begin{bmatrix} 2 & 2 & 2 \\ 0 & 0 & 3 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix} = \begin{bmatrix} 4 & 54 & 236 \\
0 & 0 & 111 \\
0 & 0 & 37 \end{bmatrix} [/latex]

Решение

Создадим класс для работы с треугольными матрицами указанного вида и снабдим его основными методами, необходимыми для решения задачи.

У нас будут конструктор матрицы из стандартного потока ввода, конструктор скалярной матрицы, а также будут перегружены операторы сложения, умножения и присваивания.

Код на С++

Ideone (C++)

 

Код на Java

Ideone (Java)

Related Images:

3 thoughts on “А717б

Добавить комментарий