AL1

Условие задачи

Вводится последовательность, состоящая из [latex]N[/latex] пар символов [latex](a_i, b_i)[/latex]. Каждая пара определяет порядок предшествования символов, например, пара [latex](b, c)[/latex] означает, что символ [latex]b[/latex] предшествует символу [latex]c[/latex]. Из порядка [latex](b, c)[/latex] и [latex](c, a)[/latex] следует порядок [latex](b, a)[/latex]. Необходимо определить, является ли введенная последовательность:

а) полной, т.е. все использованные для формирования пар символы (выбросив повторяющиеся) можно выстроить в цепочку [latex]A_{1},A_{2}, \cdots ,A_{s}[/latex] в порядке предшествования;

б) противоречивой, т.е. для некоторых символов [latex]x,y[/latex] можно получить одновременно порядок как [latex](x, y)[/latex] так и [latex](y, x)[/latex];

Тесты

Входные данные Результат
4
a b
b c
c d
b d
полный порядок
3
2 a
8 c
c b
порядок неполный
3
2 a
8 c
a 8
полный порядок
4
2 a
8 c
c 2
a c
Порядок противоречив
10
a 5
5 4
b 3
3 4
5 3
b 5
a b
4 *
* 0
4 0
полный порядок

Код программы

Решение

Общая идея решения

Эта часть решения взята отсюда

Пусть при записи этих [latex]N[/latex] пар встретилось всего [latex]K[/latex] различных символов, которые образуют множество [latex]X[/latex].

Идея решения задачи состоит в последовательном присвоении каждому символу [latex]s[/latex] из [latex]X[/latex] номера, который определяет количество [latex]P(s)[/latex] элементов, предшествующих ему, с учетом свойства транзитивности (из [latex](c, b)[/latex] и [latex](b, a)[/latex] следует [latex](c, a)[/latex]). Это осуществляется следующим образом:

Первоначально предполагается, что каждому символу не предшествует ни один символ, т.е. [latex]P(s)=0[/latex] для любого [latex]s[/latex].

При просмотре очередной пары [latex](x, y)[/latex] символу y присваивается большее из значений [latex]P(x)+1, P(y)[/latex].

Очевидно, что при первом просмотре всех пар из входной последовательности определятся все упорядоченные цепочки длины 2, т.е. состоящие из 2 элементов. Поэтому номера некоторых элементов будут как минимум 1. При каждом из следующих просмотров входной строки возможно несколько вариантов.

  1. Не произошло изменения ни одного из номеров символов. Если при этом номера символов различны и лежат в пределах от 0 до [latex]K-1[/latex], то эта нумерация определяет полный порядок. Иначе порядок неполный.
  2. Номер некоторого символа превысил [latex]K-1[/latex]. Это произошло потому, что рост номеров неограничен, т.е. осуществляется циклически. Следовательно порядок противоречив.

Легко понять, что число просмотров не превысит [latex]N[/latex].

Некоторые аспекты реализации

Нам необходимо будет несколько раз просматривать все пары, поэтому их не получится обрабатывать поточно. Будем хранить их в отдельном двумерном массиве.

Воспользуемся тем фактом, что символы воспринимаются компьютером, как числа. Заведем для номеров символов в последовательности массив chars на 256 элементов, поскольку тип данных char может принимать значения от 0 до 255. Это позволит обращаться к элементу массива, соответствующий какому-то символу напрямую, а не используя ассоциативный массив.  Это дает выигрыш в скорости, хотя и с некоторым увеличением расхода памяти.

Изначально каждый элемент массива chars пусть будет равен -1. Затем, пройдя все пары, присвоим каждому символу номер 0 в этом массиве. Таким образом, мы в дальнейшем сможем определить, что символ входит в нашу последовательность, поскольку его номер неотрицательный.

Если при очередном просмотре входной строки не произошло изменений, отсортируем массив номеров и проверим каждый ли предыдущий неотрицательный меньше следующего на 1.

ссылка на код на ideone

ссылка на условие задачи

Related Images:

Добавить комментарий