e-olymp 8946. Шаблон

Условие

По заданному натуральному числу $n$ вывести изображение размером $n\times n$, образованное символами звездочка и пробел как показано в примере.

Входные данные

Одно натуральное число $n$.

Выходные данные

Вывести изображение $n \times n$.

Тесты

Входные данные  Выходные данные
1 2
2 3
3 4
4 5
5 6

Код программы

Решение

Для того, чтобы вывести изображение как на рисунке достаточно заметить, что выводятся строки только двух видов и то поочерёдно. Первый вид — первым символом строки является $\ast$ и затем чередуется $\ast$ и пробел. Второй вид — первым символом строки является пробелом и затем чередуется $\ast$ и пробел. Мы заполняем две строки, по одной каждого вида. Нам остается только выводить строку необходимого нам вида, сделаем это в цикле.

Ссылки

Условие задачи на e-olymp

Код программы на ideone

e-olymp 8671. Представимые суммой квадратов

Задача

Найдите все числа от $1$ до $n$, представимые в виде суммы двух квадратов различных натуральных чисел.

Входные данные

Одно натуральное число $n$ $( n \leqslant 10000)$.

Выходные данные

Выведите в одной строке в возрастающем порядке все числа от $1$ до $n$, представимые в виде суммы двух квадратов различных натуральных чисел.

Тесты

Входные данные  Выходные данные
1 5 5
2 10 5 10
3 13 5 10 13
4 20 5 10 13 17 20
5 30  5 10 13 17 20 25 26 29

Код программы

Решение

Для решения задачи создадим функцию check(), которая будет возвращать $true$, если число можно представить в виде суммы двух квадратов или же $false$, если нельзя. В функции перебираем всевозможные варианты $i$ и считаем $j$ для каждого $i$ по формуле $j=\sqrt{n-i^2}$, до тех пор пока не найдем целое (не равное $i$ ) $j$ или же не переберем все $i$. Просматриваем до $ i \cdot i < n $,  потому что сумма двух квадратов не может превышать заданного числа. Формулу получили выразив $j$ из исходной формулы $(i^2+j^2=n)$.

Ссылки

Условие задачи на e-olymp

Код программы на ideone

e-olymp 9036. Комбинация игральных костей

Задача

Подсчитайте количество способов, которыми можно получить сумму $n$ бросая игральный кубик один или несколько раз. Каждый бросок дает результат между 1 и 6.

Например, если $n = 3$, то имеется 4 способа:
1 + 1 + 1
1 + 2
2 + 1
3

Входные данные

Одно целое число $n$ $(1 \leqslant n \leqslant 10^6)$.

Выходные данные

Выведите количество способов по модулю $10^9+7$.

Тесты

Входные данные  Выходные данные
1 1 1
2 3 4
3 5 16
4 6 32
5 8 123

Код программы

Первый способ (выполняется быстрее, но использует больше памяти)

Второй способ (использует меньше памяти, но выполняется дольше)

 

Решение

Создадим массив на $n+1$ элемент. В который мы сразу запишем количество перестановок для сумм 1,2..,6. Для остальных случаев, когда $n>7$ воспользуемся следующей идеей. Будем вычислять количество перестановок для сумм, начиная с 7 до тех пор, пока не дойдем до заданного нам $n$. Будем делать это по такой формуле $a_{i}=a_{i-1}+a_{i-2}+a_{i-3}+a_{i-4}+a_{i-5}+a_{i-6}$  . Для первых шести сумм вычисляем по этой же формуле, с учетом, что $0 < i-k \; (1 \leqslant k \leqslant 6)$ и добавляя еще 1 перестановку, так как мы можем получить сумму ( $i$ ), подбросив кубик 1 раз. Рассмотрим для $n=7$. Чтобы получить 7 достаточно подбросить кубик ещё один раз, так как мы знаем количество для $n$ от 1 до 6. Если выпадет 1, то остается $a_{6}$ возможных перестановок, если выпадет 2, то остается  $a_{5}$  и так далее. Затем нам требуется просуммировать, так как кубик может выпасть 6 способами, как было сказано ранее. Соответственно для $n=8$ количество комбинаций увеличится на  $a_{7}$ и уменьшится на  $a_{1}$, так как кубик имеет только 6 граней.

Ссылки

Условие задачи на e-olymp

Код программы на ideone