e-olymp 1128. Проблема Лонги

Задача

Лонги хорошо разбирается в математике, он любит задумываться над трудными математическими задачами, которые могут быть решены при помощи некоторых изящных алгоритмов. И вот такая задачка возникла:
Дано целое число [latex]n[/latex] [latex](1 < n < 231)[/latex], Вы должны вычислить [latex]\sum\limits_{i=1}^n gcd [/latex] для всех [latex] 1 ≤ i ≤ n[/latex].
"О, я знаю, я знаю!" — воскликнул Лонги! А знаете ли Вы? Пожалуйста, решите её.

Входные данные

Каждая строка содержит одно число [latex]n[/latex].

Выходные данные

Для каждого значения [latex]n[/latex] следует вывести в отдельной строке сумму [latex]\sum\limits_{i=1}^n gcd [/latex] для всех [latex] 1 ≤ i ≤ n[/latex].

Тесты

Входные данные Выходные данные
[latex]2[/latex] [latex]6[/latex] $3$
$15$
[latex]1[/latex] [latex]50[/latex] [latex]100[/latex] $1$
$195$
$520$
[latex]7[/latex] [latex]4791[/latex] [latex]12345678[/latex] [latex]478900[/latex] $13$
$15965$
$170994915$
$4980040$
[latex]123[/latex] [latex]7777[/latex] [latex]157423949[/latex] [latex]904573[/latex] $2147483648$ $405$
$54873$
$613124817$
$1809145$
$35433480192$

Код программы

Решение задачи

Согласно свойству НОД, если некоторые числа [latex]a_1[/latex] и [latex]a_2[/latex] взаимно просты, то [latex]\gcd \left(a_1 \cdot a_2, c\right) = \gcd \left(a_1, c\right) \cdot \gcd \left(a_2, c\right)[/latex], где [latex]c[/latex] — некоторая константа. Если же вместо [latex]c[/latex] взять [latex]i[/latex] ([latex] 1 ≤ i ≤ a_1 \cdot a_2[/latex]) и просуммировать по [latex]i[/latex] обе части равенства, получим:
[latex]\sum\limits_{i=1}^{a_1 \cdot a_2} \gcd \left(a_1 \cdot a_2, i\right) = \sum\limits_{i=1}^{a_1 \cdot a_2} \left(\gcd \left(a_1, i\right) \cdot \gcd \left(a_2, i\right)\right) = \sum\limits_{i=1}^{a_1} \gcd \left(a_1, i\right) \cdot \sum\limits_{i=1}^{a_2} \gcd \left(a_2, i\right)[/latex].
Значит мы можем данное число представить как произведение простых в некоторых степенях. Эти числа, очевидно, будут взаимно простыми, из чего следует возможность применения данного свойства и последующего суммирования по [latex]i[/latex].
Теперь докажем, что для любого простого числа [latex]p[/latex] в степени [latex]a\geqslant 1[/latex] верно следующее равенство:
[latex]\sum\limits_{i=1}^{p^a} \gcd\left(p^a, i\right) = \left(a + 1\right)\cdot p^a — a \cdot p^{a-1} [/latex].
Обозначим $\sum\limits_{i=1}^{r} \gcd\left(r, i\right)$ как $g\left(r\right)$.
База индукции:
[latex]a = 1[/latex]:
$$g\left(p\right) = \gcd\left(p, 1\right) + \gcd\left(p, 2\right) + \ldots + \gcd\left(p, p\right) = \left(p — 1 \right) + p = 2 \cdot p — 1.$$
Если [latex]a = 2[/latex]:
$$g\left(p^{2}\right) = \gcd\left(p^{2}, 1\right) + \gcd\left(p^{2}, 2\right) + \ldots + \gcd\left(p^{2}, p\right) + \gcd\left(p^{2}, p + 1\right) + \ldots + \\ + \gcd\left(p^{2}, 2 \cdot p\right) + \ldots + \gcd\left(p^{2}, p^{2}\right) = 1 + 1 + \ldots + p + 1 + \ldots + p + \ldots + p^{2} = \\ = \left( p^{2} — p \right) + p \cdot \left( p — 1 \right) + p^{2} = 3 \cdot p^{2} — 2\cdot p.$$
Для любых $a \geqslant 2$:
$$g\left(p^{a}\right) = \sum\limits_{j=1}^{p^{a-1}} \gcd\left(p^a, j\right) + \sum\limits_{j=p^{a — 1} + 1}^{p^{a} — 1} \gcd\left(p^a, j\right) + p^{a} =g\left(p^{a — 1}\right) + p^{a} + \\ + \sum\limits_{j=p^{a — 1} + 1}^{p^{a} — 1} \gcd\left(p^a — 1, j\right).$$
Причем:
$$\sum\limits_{j=p^{a — 1} + 1}^{p^{a} — 1} \gcd\left(p^a — 1, j\right) = \sum\limits_{j=1}^{p^{a} — p^{a-1} — 1} \gcd\left(p^{a — 1}, j\right) = \\ = \sum\limits_{j=1}^{p^{a} — p^{a-1}} \gcd\left(p^{a — 1}, j\right) — p^{a — 1} = \left( p — 1\right)\cdot g\left(p^{a-1}\right) — p^{a-1}.$$
Откуда следует:
$$g\left(p^{a}\right) = p^{a} — p^{a-1} + p\cdot g\left(p^{a-1}\right).$$
Предположение индукции:
Пусть [latex]a = b[/latex]:
$$g\left(p^{b}\right) = \left(b + 1\right) \cdot p^b — b \cdot p^{b-1}.$$
Шаг индукции:
Пусть [latex]a = b + 1[/latex]:
$$g\left(p^{b + 1}\right) = p^{b + 1} — p^{b} + p\cdot g\left(p^{b}\right) = p^{b + 1} — p^{b} + p\cdot \left[\left(b+1\right) \cdot p^{b} + b\cdot p^{b-1}\right] = \\ = \left(b + 2\right)\cdot p^{b+1} — \left(b + 1\right)\cdot p^{b}.$$

Ссылки

Условие задачи на e-olymp
Код решения

Related Images:

4 thoughts on “e-olymp 1128. Проблема Лонги

    • Вы не могли бы сделать сравнение Вашего решения с тем, что дал Михаил Медведев в своем разборе этой задачи?
    • Действительно, интересный вопрос кого из многочисленных Лонги имел в виду автор задачи о наибольшем общем делителе нескольких чисел. Можно сказать, что в задаче делается выбор единицы измерения для нескольких объектов. Такое может понадобиться, например, архитектору. Архитекторов среди Лонги было несколько. А может речь идет об этом? Однако в английской версии задачи говорится о Longge`s problem. А какая Ваша версия?

Добавить комментарий