e-olymp 1290. Номерной знак

Задача

Международный номерной регистрационный знак легкового автомобиля состоит из $A$ арабских цифр и $B$ больших букв латинского алфавита. Будем считать, что для обеспечения уникальности номера разрешено использовать любую последовательность букв и цифр.

Сколько существует различных таких номеров?

Входные данные

В единственной строке через пробел $2$ неотрицательных целых числа $B$ и $A$. Оба числа не превышают $26$.

Выходные данные

Единственное число — ответ к задаче.

Тесты

Входные данные Выходные данные
1 3 3 17576000
2 2 5 67600000
3 7 1 80318101760
4 1 1 260
5 26 26 615611958020715731079667428840020377600000000000000000000000000

Код

Решение

Начнем с того, что к условию задачи прилагается картинка, на которой видно, что во всех номерных знаках буквы и цифры не перемешаны между собой произвольно, а имеют свои четко распределенные места, в примере это последовательность, в которой на первой позиции стоит буква, далее три цифры и на последних двух позициях снова буквы. Это важный момент, поскольку если бы действительно было разрешено использовать любую последовательность, возможных комбинаций было бы гораздо больше. Поскольку в латинском алфавите $26$ букв, для выбора буквы на первое место существует $26$ возможных вариантов, на второе тоже $26$, как и на третье, четвертое и т. д. То есть для того чтобы найти все комбинации из букв для $B$ мест, нужно умножить $26$ на $26$ $B$ раз. Точно так же это работает с арабскими цифрами. Их всего $10$, соответственно, умножаем $10$ на $10$ $A$ раз, где $A$ — количество мест в номерном знаке для цифр. Поэтому, чтобы найти количество возможных комбинаций букв и цифр, перемножаем полученные результаты. Отсюда получаем формулу $26^B\cdot 10^A$.

Сложность задачи заключается скорее не в формуле вычисления, а в реализации кода, поскольку большинство значений уже на этапе возведения в степень не помещаются даже в самые большие типы данных. Именно поэтому код состоит не из пяти строк и встроенной операции возведения в степень, а из более сложных операций, подходящих для работы с большими числами. По сути, у нас возникает проблема, связанная с перемножением больших чисел, которые не помещаются в стандартные типы данных С++. Для решения этой проблемы я выбрала модель представления, в которой числа записываются в виде массивов в десятичной системе, и каждая цифра числа является элементом массива. Младший разряд числа находится в нулевом элементе массива, а старший в $n-1$-ом соответственно. Далее была реализована функция «MULT», которая фактически осуществляет алгоритм умножения поэлементно с сохранением остатка от деления на $10$ в соответствующем элементе массива и добавлением частного от деления на $10$ к следующему элементу массива. Следует отметить, что данная функция принимает два числа, записанные в выше указанной модели представления (в виде массивов), и характеристиками этих чисел является пара: сам массив и количество разрядов в числе (размер массивов иными словами). На выходе функция возвращает количество разрядов полученного произведения. Сам же результат умножения сохраняется в виде массива, который является одним из параметров функции. В коде данная функция внесена в цикл для многократного перемножения чисел, то есть для возведения в нужную степень. Домножение на $10^A$ осуществляется в последнем цикле приписыванием A нулей к полученному результату.

Ссылки

Задача на сайте e-olymp
Код решения на ideone

e-olymp 1327. Ладьи на шахматной доске

Задача

Ещё в детстве маленького Гарика заинтересовал вопрос: а сколькими способами на шахматной доске размером [latex]n \times n[/latex] можно расставить [latex] n [/latex] ладей так, чтобы они не били друг друга. Он очень долго решал эту задачку для каждого варианта, а когда решил — бросил шахматы.

А как быстро Вы управитесь с этой задачкой?

Входные данные

Размер шахматной доски — натуральное число, не превышающее [latex] 1000 [/latex].

Выходные данные

Выведите ответ, найденный Гариком.

Тесты

Входные данные Выходные данные
2 2
10 3628800
500 122013682599111006870123878542304692625357434280319284219241
358838584537315388199760549644750220328186301361647714820358
416337872207817720048078520515932928547790757193933060377296
085908627042917454788242491272634430567017327076946106280231
045264421887878946575477714986349436778103764427403382736539
747138647787849543848959553753799042324106127132698432774571
554630997720278101456108118837370953101635632443298702956389
662891165897476957208792692887128178007026517450776841071962
439039432253642260523494585012991857150124870696156814162535
905669342381300885624924689156412677565448188650659384795177
536089400574523894033579847636394490531306232374906644504882
466507594673586207463792518420045936969298102226397195259719
094521782333175693458150855233282076282002340262690789834245
171200620771464097945611612762914595123722991334016955236385
094288559201872743379517301458635757082835578015873543276888
868012039988238470215146760544540766353598417443048012893831
389688163948746965881750450692636533817505547812864000000000
000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000
999 402387260077093773543702433923003985719374864210714632543799
910429938512398629020592044208486969404800479988610197196058
631666872994808558901323829669944590997424504087073759918823
627727188732519779505950995276120874975462497043601418278094
646496291056393887437886487337119181045825783647849977012476
632889835955735432513185323958463075557409114262417474349347
553428646576611667797396668820291207379143853719588249808126
867838374559731746136085379534524221586593201928090878297308
431392844403281231558611036976801357304216168747609675871348
312025478589320767169132448426236131412508780208000261683151
027341827977704784635868170164365024153691398281264810213092
761244896359928705114964975419909342221566832572080821333186
116811553615836546984046708975602900950537616475847728421889
679646244945160765353408198901385442487984959953319101723355
556602139450399736280750137837615307127761926849034352625200
015888535147331611702103968175921510907788019393178114194545
257223865541461062892187960223838971476088506276862967146674
697562911234082439208160153780889893964518263243671616762179
168909779911903754031274622289988005195444414282012187361745
992642956581746628302955570299024324153181617210465832036786
906117260158783520751516284225540265170483304226143974286933
061690897968482590125458327168226458066526769958652682272807
075781391858178889652208164348344825993266043367660176999612
831860788386150279465955131156552036093988180612138558600301
435694527224206344631797460594682573103790084024432438465657
245014402821885252470935190620929023136493273497565513958720
559654228749774011413346962715422845862377387538230483865688
976461927383814900140767310446640259899490222221765904339901
886018566526485061799702356193897017860040811889729918311021
171229845901641921068884387121855646124960798722908519296819
372388642614839657382291123125024186649353143970137428531926
649875337218940694281434118520158014123344828015051399694290
153483077644569099073152433278288269864602789864321139083506
217095002597389863554277196742822248757586765752344220207573
630569498825087968928162753848863396909959826280956121450994
871701244516461260379029309120889086942028510640182154399457
156805941872748998094254742173582401063677404595741785160829
230135358081840096996372524230560855903700624271243416909004
153690105933983835777939410970027753472000000000000000000000
000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000

Программный код

Алгоритм решения

Алгоритм решения данной задачи заключается в том, что нужно вычислить [latex]n! = 1\times 2\times 3\times \cdots\times n [/latex] , используя длинную арифметику ( умножение длинного числа на короткое ).
Иллюстрация для восьми ладей:

В коде № 1 разбиваем вектор на ячейки по три цифры. Но, некоторые ячейки могут иметь менее чем три цифры. С учетом того, что перенос может состоять не из трех цифр, следует выводить результат так: cout << setw(3) << setfill('0') << res[i];.
В коде № 2 разбиваем строку посимвольно.

Детали реализации

  • Безусловно, для использования векторов и строк нам понадобятся соответствующие  библиотеки: #include <vector> и #include <string>.
  • Для вывода данных в коде № 1 стоит подключить библиотеку #include <iomanip>.

Ссылки :
Задача на e-olymp
Код № 1 на ideone
Код № 2 на ideone
Засчитанное решение № 1
Засчитанное решение № 2

М3

Big Summa. Заданы две текстовые строки, состоящие исключительно из цифр и не более чем одной точки.
Предполагается, что строки задают представление чисел в q-ричной системе счисления. Построить строку, являющуюся их суммой.

q A B A+B Комментарий.
10 126740 546.967 127286.967 Тест пройден.
8 2360 7521 12101 Тест пройден.
2 1011001 1101 100110 Тест пройден.
3 1210.012 1112.1 10022.112 Тест пройден.
10 4356.98 67.975 4424.955 Тест пройден.

Код программы (string):

Программа выполнена с помощью методов класса <string>. Для работы мне понадобилось написать несколько вспомогательных функций, задачей которых является дополнить числа нулями таким образом, чтобы точки чисел оказались на одинаковых позициях.

Функция dot_position. Эта функция находит места точек в обеих строках, а если таковых нет, то им присваивается значение длины строки. Возвращает функция наибольшую по значению позицию точки.

Функции length_before_dot и length_after_dot возвращают количество цифр до и после точки соответственно.

Затем начинается тело основной функции программы. Изначально пользователю предоставляется ввести систему счисления и 2 числа, которые программа считывает в виде строк. Для удобства вычислений программа дополняем строку, которая не содержит точку, ещё одним ранее названным символом. Затем мы выравниваем оба наших числа по точкам.

После этого  программа готова вычислить сумму двух чисел. Сложность реализации алгоритма сложения состояла лишь в том, что записать в строку элемент типа int — невозможно, а следовательно, его нужно было преобразовать в  строку. Для этого потребовалась функция to_string() из класса <string>. Но при этом элементы a[i] и b[i] воспринимались как коды символов, поэтому каждый из них нужно было уменьшить на ‘0’.

Ещё одна сложность — это десятки, которые мы держим «в уме», а в моём случае — во вспомогательной переменной p.

Код можно посмотреть здесь.

Код программы (cstring):

Из-за отсутствия функции insert() в классе <cstring> я была вынуждена написать её самостоятельно. В остальном работа заключалась лишь в «переводе» кода из одного класса в другой.

Код можно посмотреть здесь.