OCPC2021. Задача A. Колёса деда Панаса (код решения)

Условие

Дед Панас, постоялец палаты номер 17 заведения «Покосившийся Скворечник», срочно должен был принять свои таблетки умиротворения. К сожалению, нянечка рассыпала их по столу и теперь дед Панас твёрдо уверен, что он – Генри Форд, а на столе лежат колёса, из которых нужно собирать автомобили и мотоциклы. Сосед деда Панаса, дед Архип, также не дождавшийся своих таблеток, убеждён, что он – Блез Паскаль, и, заметив, что колёс на столе четное количество, донимает нянечку вопросом: «Сколькими способами можно распределить эти колёса между автомобилями и мотоциклами так, чтобы не оставалось лишних?» Поскольку дед Архип не уймётся, пока не получит ответа, и будет мешать нянечке собирать таблетки со стола, на помощь позвали вас и просят подсказать ей правильный ответ.

На ввод поступает единственное целое четное число $n$ $(2 \leqslant n \leqslant 10^9)$ – количество таблеток на столе.

Выведите одно число – количество способов распределить колёса между автомобилями и мотоциклами. Помните, что для автомобиля нужно $4$ колеса, для мотоцикла – $2$. Два способа считаются различными, если в одном из них количество автомобилей не совпадает с количеством автомобилей в другом; то же самое справедливо и для мотоциклов.

Тесты

Входные данные Выходные данные

6 2
2 1
12 4
1000000000 250000001

Код программы

Решение

Некоторое количество колёс уходит на автомобили, а все остальные — на мотоциклы. Тогда заметим, что каждому способу разделить колёса между автомобилями и мотоциклами соответствует количество автомобилей, которые используются в этом разделении. Всего мы можем взять от $0$ до $\frac{n}{4}$ автомобилей включительно (целочисленное деление).

Решение задачи на ideone.com

Ссылка на контест

Related Images:

e-olymp 8538. Калькулятор

Условие

Калькулятор Ильи выполняет два действия: умножает текущее число на три и прибавляет к нему единицу. На калькуляторе сейчас число $1$. Помогите Илье определить наименьшее количество действий, после которой он получит число $n$.

Входные данные

Одно число $n$ $\left(10\leq n\leq 10^9\right)$.

Выходные данные

Выведите наименьшее количество операций.

Тесты

Входные данные Выходные данные
1 1447 16
2 18 3
3 111 6

Код программы

Решение

Решим данную задачу от обратного. Пусть нам дано число $n$ и нам надо из него получить $1$, задействовав как можно меньше операций. Для этого объявим цикл while(), который будет работать до тех пор, пока наше число $n$ будет строго больше $0$. Внутри цикла опишем следующее решение: пусть k будет счётчиком нажатий на кнопки калькулятора и изначально равняется $0$. Тогда, при каждом шаге цикла мы к счётчику будем прибавлять остаток от деления на $3$. n%3 — именно столько раз нам потребуется отнять $1$ от $n$ чтобы можно было нацело разделить на $3$. Далее, делим $n$ на $3$ и это потребует еще одного нажатия (что и происходит в строке $9$). Так как в условии цикла мы написали, что $n > 0$, то мы пройдём лишнюю итерацию и к счётчику прибавятся два лишних шага. Поэтому, при выводе ответа, от $k$ отнимаем $2$.

Related Images:

e-olymp-8841. Цифра 2

Цифра 2

На входе программы имеется натуральное число $n$ ($n \gt 9$). Нужно вывести предпоследнюю справа цифру (разряд десятков) числа $n$.

Входные данные:

Натуральное число $n$ ($n \gt 9$).

Выходные данные:

Цифра разряда десятков числа $n$.

Тесты

Входные данные

Выходные данные

1 27 2
2 102 0
3 1234 3
4 34867 6

Решение

Чтобы получить разряд десятков введенного числа надо поделить число на $10$ и взять остаток от деления на $10$.

Ссылки

Условие задачи на e-olymp

Код программы на ideone

Related Images:

e-olymp 9104. Плоская земля

Условие

Система образования Вас снова подвела — Ваше предложение о включении модели «Плоская Земля» в программу старшей школы было отклонено в шестой раз подряд. Коррумпированные ученые Круглой Земли отказываются прислушиваться к Вашим аргументам и игнорируют кучу данных, подтверждающих Ваши заявления.

Настало время урегулировать этот конфликт раз и навсегда. Вы путешествовали по всему земному шару и встречались с ведущими учеными Плоской Земли. Вместе Вы разработали блестящий план.

Ради противоречия предположим, что Земля — это сфера в трехмерном пространстве. Тогда, если предположить, что небо является бесконечной плоскостью в пространстве, такая Земля явно бросит на него тень! Эта тень была бы ортогональной проекцией Земли на небо. Поскольку в действительности на небе нет видимой тени, мы достигаем противоречия.

Осталось только выполнить расчеты. По заданным центру и радиусу Земли, а также уравнению небесной плоскости в виде [latex]ax + by + cz + d = 0[/latex] необходимо определить площадь ортогональной проекции Земли на небо. Обратите внимание, что в некоторых Ваших экспериментах Земля может пересекать небо — Вы не хотели бы вводить слишком много ненужных предположений, не так ли?

Входные данные

Первая строка содержит количество тестов [latex]n[/latex] [latex]\left(1\leqslant n\leqslant 10\right)[/latex]. Далее следует описание тестов.

Каждый тест описывается строкой, содержащей восемь целых чисел [latex] x, y, z, r, a, b, c, d [/latex]. Они обозначают координаты центра Земли, его радиус и уравнение неба соответственно. Все числа от [latex]1[/latex] до [latex]1000[/latex] включительно.

Выходные данные

Для каждого теста выведите одно число: площадь проекции с не менее [latex]6[/latex] десятичными цифрами.

Тесты

Входные данные Выходные данные
1 1
2 3 5 7 1 2 4 8
153.938040026
2 2
2 3 5 7 1 2 4 8
4 5 3 9 2 6 8 10
153.938040026
254.469004941
3 3
2 3 5 7 1 2 4 8
4 5 3 9 2 6 8 10
23 45 87 8 100 200 65 89
153.938040026
254.469004941
201.06192983

Код программы

Решение

Для начала, определимся, чего от нас хотят авторы задачи.  По сути, самой важной частью условия является третий абзац, из которого мы узнаем, что Земля — сфера, а также, что ортогональная проекция Земли на небо — это тень от Земли на небесную плоскость. Но, если существует тень, значит существует и светило (Солнце). Для того, что бы стало более понятно, проведём эксперимент. Представим, что Земля — это, к примеру, сфера, Солнце — это настольная лампа (Важно! Лампа будет давать параллельный пучок лучей), а небесная плоскость — это обычный лист бумаги. (Важно! В данном эксперименте размеры светила и размеры «Земли» будут совпадать). При направлении света на сферу, на лист бумаги будет отбрасываться тень (площадь которой нам и надо найти). Итак, как мы видим на рисунке, площадь проекции — это ничто иное, как площадь сечения сферы, проходящее по центральной оси этой сферы. А площадь сечения сферы по центральной оси — это площадь круга, которая вычисляется по формуле [latex]S=\pi r^2[/latex]. Таким образом, что бы рассчитать площадь проекции, из всех входящих данных нам понадобится только радиус Земли. Что бы у нас было число [latex]\pi[/latex], мы подключаем библиотеку cmath. Чтобы вывести число с [latex]6[/latex] десятичными знаками после запятой, подключаем библиотеку iomanip .

Related Images:

e-olymp 8283. Музыка

Задача

Малыши и малышки очень любили музыку, а Гусля был замечательный музыкант. У него были разные музыкальные инструменты, и он часто играл на них. Их было много, поэтому он развесил их на стенах своей комнаты. Инструмент, расположенный справа от входной двери имел номер $1$, дальше они нумеровались по кругу, а последний инструмент с номером $n$ висел слева от этой двери.

Малыши часто просили его научить играть на каком-нибудь инструменте. Гусля не отказывал, но сначала предлагал взять инструмент с первым номером, а если ученику хотелось играть на другом, то он выбирал шестой следующий по кругу и так далее. Напишите программу, которая определяла номер попытки, с которой ученик мог получить желаемый инструмент с номером $k$.

Например, если количество инструментов $n = 11$, то последовательность будет следующей: $(1) 2 3 4 5 6 (7) 8 9 10 11 1 (2) 3 4 5 6 7 (8) 9 10 11 1 2 (3) 4 5$ …, то есть при $k = 3$ инструмент с номером $3$ можно было бы получить с пятой попытки.

Входные данные

Два натуральных числа $n$ и $k$ $(1 \leqslant k \leqslant n \leqslant 100)$.

Выходные данные

Вывести номер попытки, в который «выпадал» инструмент с номером $k$. Если это никогда не происходило, следует вывести $0$.

Тесты

Входные данные Выходные данные
1 11 3 5
2 6 2 0
3 13 13 3
4 9 8 0
5 5 5 5

Код

Решение

Для решения задачи нам необходимо рассмотреть ряд натуральных чисел, начиная с единицы и прибавляя каждый раз $6$. С помощью операции деления с остатком мы можем реализовать алгоритм нахождения номера музыкального инструмента. Однако логика решения изменяется в зависимости от введенных пользователем данных. Имеется два случая:

  1. Если пользователь вводит разные числа.
  2. Если пользователь вводит одинаковые числа.

В первом случае мы рассматриваем две ситуации:
1) если пользователь вводит количество инструментов $6$, то единственным решением будет инструмент под номером $1$, так как Гусля выбирает инструменты через $6$ штук по кругу;
2) если количество инструментов не равно $6$ то мы реализовываем алгоритм нахождения номера путем деления с остатком, а именно: если текущее число при делении на количество инструментов не дает в остатке искомый номер, мы прибавляем $1$ к числу попыток, а число увеличиваем на $6$, в противном случае мы нашли число попыток.
Еще здесь, так же, как и во втором случае, есть подводный камень: если мы уже сделали какое-то количество попыток и текущее число при делении на количество инструментов дает в остатке $1$, мы никогда не попадем на нужный нам номер инструмента.

Во втором случае мы также рассматриваем две ситуации:
1) если количество инструментов делится нацело на $2$, то нам никогда не выпадет нужный инструмент;
2) если текущее число при делении на количество инструментов не дает в остатке $0$, мы прибавляем $1$ к числу попыток, а число увеличиваем на $6$, в противном случае ответ найден.
Также не забываем про подводный камень, указанный выше.

Ссылки

  • Условие задачи на e-olymp
  • Код программы на ideone.com
  • Засчитанное решение на e-olymp

Related Images:

e-olymp 9405. Профессор и шары

Условие задачи

Для праздника Профессор купил голубые, красные и жёлтые воздушные шары. Всего $n$ штук. Жёлтых и голубых вместе — $a$. Красных и голубых — $b$ штук.

Сколько голубых, красных и жёлтых шаров купил Профессор?

Входные данные

Три натуральных числа $n$, $a$, $b$.

Выходные данные

В одной строке выведите количество голубых, красных и жёлтых шаров, которые купил Профессор.

Тесты

Входные данные Выходные данные
1 10 6 8 4 4 2
2 12 8 10 6 4 2
3 14 10 12 8 4 2
4 16 14 12 10 2 4

Программный код

Решение

Для решения задачи необходимо вывести формулу для вычисления количества жёлтых ($y$), синих ($u$) и красных ($r$) шаров. Из условия имеем, что:

$$\left.\begin{matrix}
&u&+&y&=a&\\
&r&+&u&=b&\\
&r&+&u&+&y&=n&
\end{matrix}\right\}$$

Выразим $r$ и $y$ через $u$:

$$\left.\begin{matrix}
r=&b&-&u&\\
y=&a&-&u&
\end{matrix}\right\}$$

Подставим эти значения в формулу $r+u+y=n$:

$n=b-u+u+a-u$

$u$ и $-u$ взаимоуничтожатся и мы получим, что:

$n=a+b-u$

Теперь выведем формулу для вычисления количества синих шаров:

$u=b+a-n$

Ссылки

Related Images:

e-olymp 4752.  Кинотеатр

Задача

Однажды, ученики B-й школы города G решили съездить в кино. Администрация кинотеатра расположила их в зале размера $n × m$, который специально был подобран так, чтобы все места были заняты школьниками. Каждому посетителю кинотеатра был выдан свой номер.

Школьники заняли свои места следующим образом: они входили в зал в порядке, в котором шли их номера, и полностью занимали сначала первый ряд, потом второй, потом третий и т.д.

Однако классный руководитель решил, что такая рассадка плохо влияет на поведение учащихся и пересадил их по-другому: ученики сначала занимали все первые места каждого ряда, потом все вторые места каждого ряда и т.д. (см. рисунок).

Администрация решила выяснить, сколько учащихся не поменяют своего места после пересадки.

Входные данные:
В первой строке заданы числа $n$ и $m$ $(1 \le n, \le 1000)$.

Выходные данные:
Выведите одно число — количество учеников, которые в результате пересадки останутся сидеть на тех же местах.

Тесты

Входные данные Вывод программы
3 3 3
3 2 2
231 543 3

Continue reading

Related Images:

e-olymp 75. Пираты и монеты

Задача

[latex]n[/latex] пиратам удалось справедливо разделить клад из [latex]m[/latex] золотых монет — каждый получил свою часть согласно своему пиратскому рангу и стажу. Самый молодой пират взял [latex]a[/latex] монет, а каждый следующий пират брал на одну монету больше, чем предыдущий его коллега. Последним был капитан, которому досталось вдвое больше от запланированного, очевидно, что после него монет больше не осталось.

Сколько было пиратов вместе с капитаном, если известны [latex]a[/latex] и [latex]m[/latex]. Так как капитан без команды просто пират, то [latex]n > 1[/latex].

Входные данные

Два натуральных числа [latex]a[/latex] и [latex]m[/latex] ([latex]1 \leq a \leq 100, m < 15150[/latex]). Входные данные корректны.

Выходные данные

Количество пиратов [latex]n[/latex].

Тесты

 #  ВХОДНЫЕ ДАННЫЕ  ВЫХОДНЫЕ ДАННЫЕ
 1  5 25  3
 2  3 24  4
 3  4 38  5
 4  5 55  6
 5  6 75  7

Код программы

Решение задачи

Для решения задачи воспользуемся формулой арифметической прогрессии, которая в данном случае равна: [latex](2a + n — 1)\frac{n}{2} + a + n — 1[/latex]. Отсюда получаем квадратное уравнение : [latex]\frac{n^{2}}{2} + n(a + \frac{1}{2}) + a — 1 = m[/latex], упростим и получим: [latex]n^{2} + 2an + n + 2a — 2 = 2m[/latex]. В коде задаем чему равно [latex]b[/latex], [latex]c[/latex] и [latex]d[/latex]. Где [latex]b[/latex] и [latex]c[/latex] — коэффициенты квадратного уравнения, а [latex]d[/latex] — дискриминант квадратного уравнения, который вычисляем по формуле: [latex]b^{2} — 4c[/latex]. Они нужны для нахождения корня данного квадратного уравнения. При этом ответом на задачу будет только один корень квадратного уравнения, так как количество пиратов не может принимать отрицательное значение. Поэтому вычисляем корень квадратного уравнения по формуле: [latex]\frac{-b + \sqrt{b}}{2}[/latex], тем самым получаем ответ на нашу задачу.

Код программы (с циклом)

Решение задачи

В данном способе используем цикл. Как он работает: в условии цикла задаем проверку, когда наступит очередь капитана и будет выполнятся равенство вида [latex]m — 2a = 0[/latex] цикл прекратит свою работу. Пока это равенство не будет выполнятся цикл будет выполнять работу арифметической прогрессии, постоянно увеличивая количество монет [latex]a[/latex] на каждого пирата при этом, вычитая каждый раз из общего клада [latex]m[/latex], также, пока не выполняется данное равенство, считаем количество пиратов [latex]n[/latex], путем прибавления [latex]n + 1[/latex], пока работает цикл. И когда цикл прекращает свою работу, в конце учитываем капитана и к полученному количеству пиратов [latex]n[/latex] прибавляем [latex]n + 1[/latex]. И получаем ответ на нашу задачу.

Код программы (с условным оператором)

Решение задачи

В данном способе воспользуемся рекурсивной функцией и условными операторами. Как это работает: внутри рекурсивной функции расписываем условные операторы, которые определяют равенством [latex]m — 2a = 0[/latex] — когда наступила очередь капитана, а пока это условие не выполняется, функция будет вызывать сама себя пока это условие не удовлетворится, функция каждый раз вызывается с новыми параметрами соответственно. Где [latex]a[/latex] — количество монет даваемое пиратам, увеличивается по рангу каждого пирата, [latex]m[/latex] — клад, от него отнимаем текущее [latex]a[/latex], и [latex]n[/latex] — количество пиратов, считаем пиратов. И в конце выводит количество пиратов. Задача решена.

Ссылки

Related Images:

e-olymp 1623. Чётные и нечётные числа

Задача

Дано три целых числа $a$, $b$, $c$. Определить, есть ли среди них хотя бы одно чётное и хотя бы одно нечётное число.

Входные данные

Числа $a$, $b$, $c$, не превышающие по модулю $10000$ (числа могут быть отрицательными).

Выходные данные

Вывести «YES» или «NO».

Тесты

# Входные данные Выходные данные
1 3 4 5 YES
2 7 7 7 NO
3 2 3 50 YES
4 -1 -3 5 NO
5 10 5 -2 YES

Код решения

Решение

Проверяем, есть ли среди введенных чисел хотя бы одно четное и хотя бы одно нечетное. При выполнении обоих условий, выводим «YES», в другом случае «NO».

Related Images:

e-olymp 8523. Окружность

Задача взята с сайта e-olymp

Условие

Задан радиус окружности [latex]r[/latex]. Найдите длину окружности и ее площадь.

Входные данные

Радиус окружности [latex]r (r >0)[/latex], являющийся действительным числом.

Выходные данные

Вывести в одной строке длину окружности и ее площадь с [latex]4[/latex] десятичными знаками.

Тесты

Inputs Outputs
1 1.234 7.7535
4.7839
2 3.5 7.7535
4.7839
3 0 0.0000
0.0000
4 10 62.8319
314.1539
5 313 1966.6370
307778.6907

Код

Решение

По известным формулам длины окружности [latex]l = 2\pi r[/latex] и площади окружности [latex]S = \pi r^{2}[/latex] находим их. С помощью setprecison() выводим числа с нужной нам точностью.

Ссылки

Related Images:

e-olymp 7943. Периметр прямоугольника

Задача

Найдите периметр прямоугольника.

Входные данные

Целочисленные стороны прямоугольника [latex]a[/latex] и [latex]b\left(1\leq a, b\leq 1000\right)[/latex]

Выходные данные

Выведите периметр прямоугольника.

Тесты

Входные данные Выходные данные
1 1 4
1000 1000 4000
10 20 60
12 13 50
176 37 426

Решение

Объяснение

Поскольку стороны прямоугольника, используемые в задаче, целочисленные, и каждое из них меньше [latex]1000[/latex] то переменные создаём типа int. Для решения этой задачи воспользуемся формулой нахождения периметра прямоугольника: [latex] (a+b) \cdot 2 [/latex]

Related Images:

e-olymp 8531. Делимость на числа

Задача

Задано натуральное число [latex]n.[/latex] Делится ли оно одновременно на [latex] a\ [/latex] и на [latex] b?[/latex]?

Входные данные

Три натуральных числа [latex] n, a, b,[/latex] не больших [latex] 10^{9}.[/latex]

Выходные данные

Выведите «YES» если [latex] n\ [/latex] делится одновременно на [latex] a\ [/latex] и на [latex] b\ [/latex]. Выведите «NO» иначе.

Тесты

Ввод Вывод
1 12 4 6 YES
2 10 5 6 NO
3 1056 22 6 YES
4 98 103 5 NO

Решение

Проверим делимость [latex] n\ [/latex] на [latex] a\ [/latex] и [latex] b.[/latex] Число $n$ делится одновременно на $a$ и $b$ тогда, когда и остаток от деления $n$ на $a$ равен $0$ ( n % a == 0), и остаток от деления $n$ на $b$ равен $0$ ( n % b == 0).

Код с ветвлением

Код без использования ветвления

 

Ссылки

Related Images:

e-olymp 8372. Составить треугольник

Задача взята с сайта e-olymp

Задача

По заданным длинам трех отрезков определить, можно ли из них составить невырожденный треугольник. Треугольник называется невырожденным, если его площадь больше 0.

Входные данные

Три натуральных числа $a, b, c (1 ≤ a, b, c ≤ 1000)$ — длины трех отрезков.

Выходные данные

Вывести YES если из отрезков можно составить невырожденный треугольник и NO в противном случае.

Тесты

# ВХОДНЫЕ ДАННЫЕ ВЫХОДНЫЕ ДАННЫЕ
1 5 6 7 YES
2 3 7 4 NO
3 16 24 32 YES
4 54 1 100 NO
5 1 1 1 YES

Код программы (Ветвление)

Код программы (Линейные вычисления)

Решение задачи

Пусть $a, b, c$ – длины трех отрезков. Из них можно составить невырожденный треугольник, если длина каждых двух отрезков больше длины третьего (это условие известно как неравенство треугольника): | $b$ | < | $a$ | + | $c$ | \begin{cases} b + c > a\\a + c > b\\a + b > c\end{cases}

Ссылки

Условие задачи на e-olymp

Код программы на ideone (Линейные вычисления)

Код программы на ideone (Ветвление)

Related Images:

e-olymp 4718. Привет, Гарри!

Задача взята с сайта e-olymp

Задача

Напишите программу, которая приветствует пользователя, выводя слово Hello, имя пользователя и знаки препинания в следующем виде: Hello, Harry

Входные данные

В единственной строке вводится имя пользователя.

Выходные данные

В первой строке выведите приветствие.

Тесты

# ВХОДНЫЕ ДАННЫЕ ВЫХОДНЫЕ ДАННЫЕ
1 Harry Hello, Harry
2 Peter Hello, Peter
3 Emily Hello, Emily
4 Anna-Maria Hello, Anna-Maria
5 Zhao Yun Hello, Zhao Yun

Код

Решение

Для того, чтобы задать переменную-строку, воспользуемся библиотекой string. Далее, введём переменную, к примеру name (имя). В строке вывода зададим неизменную часть фразы Hello, и саму переменную.

Ссылки

ideone
e-olymp

Related Images:

e-olymp 1610. Зайцы в клетках

Задача взята с сайта e-olymp

Задача

Всем известен, так называемый, принцип Дирихле, который формулируется следующим образом:

Предположим, что некоторое число кроликов рассажены в клетках. Если число кроликов больше, чем число клеток, то хотя бы в одной из клеток будет больше одного кролика.

В данной задаче мы рассмотрим более общий случай этого классического математического факта. Пусть имеется [latex]n[/latex] клеток и [latex]m[/latex] зайцев, которых рассадили по этим клеткам. Вам требуется расcчитать максимальное количество зайцев, которое гарантированно окажется в одной клетке.

Входные данные

В одной строке заданы два натуральных числа [latex]n[/latex] и [latex]m[/latex] (1[latex]n[/latex], [latex]m[/latex] ≤ [latex]\ 10^{9}[/latex]).

Выходные данные

Максимальное количество зайцев, которое гарантированно окажется в одной клетке.

Тесты

# Входные данные Выходные данные
1 3 4 2
2 15 144 10
3 1 7 7
4 100 123456 1235
5 222 222 1

Код

Решение

Распределяя всех [latex] m [/latex] зайцев равномерно по клеткам [latex] n [/latex] получаем что максимальное количество зайцев в одной клетке равно [latex]\lceil \frac{m}{n}\rceil[/latex]

Ссылки

ideone
e-olymp

Related Images:

e-olymp 7367. Спортсмен

Задача

Спортсмен в первый день пробежал 10 км. Каждого следующего дня он увеличивал норму на 10% от нормы предыдущего дня. Опредилить через какое найменьшее количество дней спортсмен пробежит сусмарный путь не меньший чем [latex]N[/latex] км.

Входные данные

Целое число [latex]N (0 < N≤ 1000)[/latex].

Выходные данные

Единственное число – количество дней.

Тесты

# ВХОДНЫЕ ДАННЫЕ ВЫХОДНЫЕ ДАННЫЕ
1 9 1
2 45 4
3 324 16
4 1234 28
5 213213123 153

Код программы №1 (с использованием цикла):

Решение задачи:

Сначала вводим 4 переменные: [latex] k=1 [/latex] ( количество дней ), [latex] T=10 [/latex] ( количество километров которое спортсмен пробежал ), [latex] N [/latex] ( количество километров которое спортсмен должен пробежать ) и [latex] S [/latex] ( количество километров которое спортсмен пробегает в день ). Цикл каждый раз будет прибавлять к расстоянию которое пробежал спортсмен, количество километров которое спортсмен должен пробежать в течение следующего дня, с учетом того, что каждый день он будет пробегать на [latex] 10 [/latex] процентов больше, чем в прошлый день, параллельно увеличивая количество дней, пока [latex] N [/latex] будет больше [latex] T [/latex]. Если же [latex] N [/latex] при вводе изначально будет меньше [latex] T [/latex], то программа выведет, что спортсмену достаточно одного дня.

  • Время срабатывания программы при [latex]N = 1000[/latex] : [latex]65[/latex] [latex]ms[/latex]

 

Ссылки

  • Задача на сайте e-olymp
  • Код решения в Ideone

Код программы №2(с использованием линейных вычислений):

Решение задачи:

Также данную задачу можно решить с помощью формулы геометрической прогрессии [latex]S=\frac{b_1(q^n-1)}{q-1}[/latex] из которой нам нужно будет выразить степень [latex] n [/latex] через логарифм при условии того, что по условию задачи мы знаем, что [latex] q=1.1 [/latex] и [latex] b_1=1 [/latex]. И мы получаем, что [latex] \left(n=\log_{1.1}\left(\frac{s}{100}+1\right)\right) [/latex]. При записи логарифма по основанию в С++ мы пользуемся основным свойством логарифмов: [latex] \log_{a}\left(b\right)=\frac{\log_{c}\left(b\right)}{\log_{c}\left(a\right)} [/latex]. Также используем функцию сeil, которая округлит выходное число вверх, до ближайшего целого. ( [latex] S [/latex] — количество километров, которое должен пробежать спортсмен ).

  • Время срабатывания программы при [latex]N = 1000[/latex] : [latex]76[/latex] [latex]ms[/latex]

Ссылки

Related Images:

e-olymp 1474. Сломанные часы

Задача

В электронных часах произошел сбой, и теперь каждую секунду увеличивается не счетчик секунд, а счетчик часов. При переполнении счетчика часов (то есть при достижении [latex]24[/latex]) он сбрасывается в [latex]0[/latex] и увеличивается счетчик минут. Аналогично, при переполнении счетчика минут происходит его сброс и увеличивается счетчик секунд. При переполнении счетчика секунд он также сбрасывается в [latex]0[/latex], а остальные счетчики так и остаются равными [latex]0[/latex]. Известно, что сбой произошел в [latex]h_1[/latex] часов [latex]m_1[/latex] минут [latex]s_1[/latex] секунд. В этот момент часы показывали правильное время.

Напишите программу, определяющую по показаниям сломанных часов правильное время.

Входные данные

В первой строке задаются три целых числа [latex]h_1[/latex], [latex]m_1[/latex], [latex]s_1[/latex], определяющие время поломки часов. Во второй строке записаны три числа [latex]h_2[/latex], [latex]m_2[/latex], [latex]s_2[/latex], которые определяют показания часов в текущий момент времени ( [latex]0\;\le\;h_1,\;h_2\;\lt\;24[/latex], [latex]0\;\le m_1,\;m_2,\;s_1,\;s_2\;\lt\;60[/latex] ).

Выходные данные

В единственной строке выведите правильное время (т.е. число часов, минут и секунд) в момент, когда сломанные часы будут показывать [latex]h_2[/latex] часов [latex]m_2[/latex] минут [latex]s_2[/latex] секунд.

Тесты

Входные данные Выходные данные
[latex]12 \; 0 \; 0\\12 \; 1 \; 0[/latex] [latex]12 \; 0 \; 24[/latex]
[latex]13 \; 59 \; 59\\12 \; 59 \; 59[/latex] [latex]13 \; 59 \; 58[/latex]
[latex]15 \; 12 \; 16\\15 \; 12 \; 16[/latex] [latex]15 \; 12 \; 16[/latex]
[latex]\;0 \;\;\; 0 \;\;\; 0\\23 \; 59 \; 59[/latex] [latex]23 \; 59 \; 59[/latex]
[latex]16 \; 0 \; 17\\16 \; 0 \; 18[/latex] [latex]16 \; 24 \;17[/latex]
[latex]11 \;\; 0 \;\; 53\\0 \;\;\; 0 \;\;\; 0[/latex] [latex]13 \; 48 \; 42[/latex]
[latex]1 \;\; 13 \; 18\\22 \; 51 \; 32[/latex] [latex]7 \;\;\; 4 \;\;\; 51[/latex]

Код программы

 

Решение

Учитывая особенности хода сломанных часов, подсчитаем количество секунд в начальный и конечный моменты времени ( sum1 и sum2). Вычислим, сколько секунд прошло с момента поломки часов — для этого найдём разность sum2 - sum1, прибавим [latex]86400[/latex] —  количество секунд в сутках (поскольку мог произойти переход через момент времени [latex]0 \; : \; 0 \; : \; 0[/latex]) и найдём остаток от деления полученной суммы на [latex]86400[/latex].

Теперь найдём количество секунд, прошедших с начала суток, в которых поломались часы ( time1). Прибавим к нему количество секунд, прошедших с момента поломки часов и найдём остаток от деления на [latex]86400[/latex] полученного числа. Имеем time2 — правильное время в секундах. Далее, находим значения счётчиков часов [latex]h_3[/latex], минут [latex]m_3[/latex] и секунд [latex]s_3[/latex] которые соответствуют моменту времени time2.

Ссылки

Условия задачи на e-olymp
Код задачи на ideone

Related Images:

e-olymp 51. К-домино

Задача

ДоминоРаботник отдела технического контроля любил выбраковывать «доминошки», которые содержали одинаковые значения. Так как на предприятии, выпускающем [latex]K[/latex]-домино, этого не знали, к нему постоянно поступали претензии на сумму, равную стоимости [latex]K[/latex]-домино. Стоимость [latex]K[/latex]-домино составляла ровно столько гривен, сколько было в купленном покупателем наборе доминошек.Для того, чтобы его не уволили с работы, работник ОТК выбраковывал иногда не только все не любимые «доминошки», а несколько больше, но не более половины гарантированно выбраковыванных.Зная сумму претензии, пришедшей на предприятие, установите, какой из наборов [latex]K[/latex]-домино был куплен покупателем.

Входные данные

Единственное число [latex]S[/latex] – сумма претензии, пришедшей на предприятие, [latex]S ≤ 2000000000[/latex].

Выходные данные

Единственное число – индекс [latex]K[/latex] купленного покупателем [latex]K[/latex]-домино.

Входные данные Выходные данные
1 5 3
2 10 4
3 1000000 1414
4 555666777888 1054198
5 13 5

Код программы

Решение

[latex]K[/latex]-домино — набор домино с минимальным количеством точек на одной из половин доминошки.
Количество дублей, то есть количество точно выбракованных доминошек — [latex]k[/latex]+1. Общее количество доминошек [latex]k[/latex]-домино:$$(k+1){{k+2}\over{2}}$$
Пусть работник дополнительно выбраковывал [latex]e[/latex] доминошек. [latex]s[/latex] — сумма претензии, тогда имеем:

[latex]k+1+e+s= (k+1){{k+2}\over{2}}[/latex]

[latex]k^2<=2s+1[/latex]

[latex]k=[\sqrt{2s+1}][/latex]

Ссылки

Ссылка на e-olymp.
Ссылка на Ideone

Related Images:

e-olymp 7612. Алекс и квадраты оригами

Задача

Алекс любит оригами — японское искусство складывания из бумаги. Большинство конструкций оригами начинаются с квадратного листа бумаги. Алекс собирается сделать подарок для своей матери. Подарочная конструкция требует три одинаковых квадратных листа бумаги, но у Алекса имеется только один прямоугольный лист. Он может из него вырезать квадраты, стороны которых должны быть параллельны сторонам листа. Помогите Алексу определить максимально возможный размер квадратов, который он способен вырезать.

Входные данные

В одной строке два целых числа [latex]h[/latex] и [latex]w[/latex] ([latex]1 ≤ h, w ≤ 1000[/latex]) — высота и ширина куска бумаги.

Выходные данные

Выведите одно действительное число — наибольшую длину стороны квадратов. Всегда можно вырезать три одинаковых квадрата из листа бумаги размером [latex]h × w[/latex] так, чтобы их стороны были параллельны сторонам листа.

Ответ следует вывести с точностью не меньше трех десятичных знаков.

Тесты

Входные данные Выходные данные
$100$ $100$ $50.000$
$10$ $80$ $10.000$
$50$ $76$ $25.333$
$60$ $27$ $20.000$
$8$ $3$ $2.667$

Код программы

Решение задачи

Существует два варианта оптимального расположения трех квадратов — три в один ряд,

или же два, соприкасающихся одной стороной, и третий над ними

Обозначим за [latex]a[/latex] меньшую сторону листа бумаги, а за [latex]b[/latex] — большую. Если [latex]a[/latex] не больше [latex]\frac{b}{3}[/latex], то оптимальным расположением квадратов в прямоугольнике будет первый вариант, а наибольшей возможной стороной квадратов является меньшая сторона листа бумаги [latex]a[/latex]. В противном случае рассмотрим два варианта:

  1. Если [latex]\frac{a}{2}<\frac{b}{3}[/latex], то квадраты будут располагаться в прямоугольнике первым способом, и ответом будет служить число [latex]\frac{a}{2}[/latex].
  2. Иначе квадраты будут располагаться в прямоугольнике вторым способом, и ответом будет служить число [latex]\frac{b}{3}[/latex].

Таким образом, в случае [latex]a>\frac{b}{3}[/latex] ответом будет служить большее из двух чисел [latex]\frac{a}{2}[/latex] и [latex]\frac{b}{3}[/latex].
Минимальное из [latex]\max\left(\frac{b}{3},\frac{a}{2}\right)[/latex] и [latex]a[/latex] число и будет ответом.
Проверим нашу формулу:если [latex]a<\frac{b}{3}[/latex], то [latex] \max\left(\frac{b}{3},\frac{a}{2}\right)=\frac{b}{3} [/latex], и тогда [latex]\min\left(a,\max\left(\frac{b}{3},\frac{a}{2}\right)\right)=a[/latex]. Иначе [latex]\min\left(a,\max\left(\frac{b}{3},\frac{a}{2}\right)\right)=\max\left(\frac{b}{3},\frac{a}{2}\right)[/latex], что нам и требуется.

Ссылки

Условие задачи на сайте E-Olymp
Код решения задачи

Related Images:

e-olymp 932. Высота треугольника

Задача

Определить высоту треугольника площадью [latex]S[/latex], если его основание больше высоты на величину [latex]a[/latex].

Входные данные

Два целых числа: [latex]S (0 < S ≤ 100), и[/latex] [latex]a[/latex] ([latex]\left | a \right |[/latex] ≤ 100).

Выходные данные

Искомая высота с точностью до сотых.

Тесты

# Входные данные Выходные данные
1 20 7 3.73
2 35 3 7.00
3 12 4 3.29
4 67 9 7.92
5 135 13 11.17

Код программы

Алгоритм решения задачи

  1. Формула для вычисления площади треугольника [latex]S=[/latex][latex]\frac{1}{2}\cdot h \cdot c[/latex], где [latex]h[/latex] – высота, а [latex]c[/latex] – сторона, к которой высота проведена.
  2. В задаче сказано, что основание больше высоты на величину [latex]a[/latex]. Значит вместо [latex]c[/latex] мы можем подставить в формулу [latex]h+a[/latex]. Теперь формула приобретает следующий вид: [latex]S=[/latex][latex]\frac{1}{2}\cdot h \cdot \left (h+a \right )[/latex]
  3. Cовершив некоторые преобразования приходим к квадратному уравнению [latex]h^{2}+a\cdot h-2\cdot S = 0[/latex]
  4. Далее находим дискриминант по формуле [latex]D = a^{2}+4\cdot2\cdot S[/latex]. Находим корень квадратный из дискриминанта [latex]\sqrt{D}[/latex]
  5. Находим высоту по формуле [latex]h=\frac{-a+\sqrt{D}}{2}[/latex]
  6. Второй корень нам не подходит, потому что он меньше [latex]0[/latex], а длина не может быть отрицательной.
  7. Подставляем исходные данные в формулы, получаем результат.

Также подробное описание представлено в коде программы.

Ссылки

Ссылка на e-olymp

Ссылка на ideone

Related Images: