Задача
Дана сфера радиуса [latex]1[/latex]. На ней расположены равные окружности [latex]\gamma_0[/latex], [latex]\gamma_1[/latex], [latex]\ldots[/latex], [latex]\gamma_n[/latex] радиуса [latex]r \left(n \ge 3\right)[/latex]. Окружность [latex]\gamma_0[/latex] касается всех окружностей [latex]\gamma_1[/latex], [latex]\ldots[/latex], [latex]\gamma_n[/latex]; кроме того, касаются друг друга окружности [latex]\gamma_1[/latex] и [latex]\gamma_2[/latex]; [latex]\gamma_2[/latex] и [latex]\gamma_3[/latex]; [latex]\ldots[/latex]; [latex]\gamma_n[/latex] и [latex]\gamma_1[/latex].
При каких [latex]n[/latex] это возможно? Вычислить соответствующий радиус [latex]r[/latex].
Входные данные
Количество окружностей [latex]n[/latex].
Выходные данные
Радиус окружностей [latex]r[/latex].
Тесты
Входные данные ([latex]n[/latex]) |
Выходные данные ([latex]r[/latex]) |
3 |
0.816497 |
4 |
0.707107 |
5 |
0.525731 |
6 |
Solution does not exist. |
Код программы
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
|
#include <iostream> #include <cmath> using namespace std; int main() { unsigned int n; double s_2, r; cin >> n; if ((n < 3) || (n > 5)) cout << "Solution does not exist." << endl; else { s_2 = sin(M_PI/n); s_2 *= s_2; //Возведение синуса во вторую степень. r = sqrt(1 - 1/(4.0*s_2)); cout << r << endl; } return 0; } |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
|
import java.util.*; public class Main { public static void main (String[] args) throws java.lang.Exception { Scanner in = new Scanner(System.in); int n = in.nextInt(); if ((n < 3) || (n > 5)) System.out.println("Solution does not exist."); else { double s_2 = Math.sin(Math.PI / n); s_2 *= s_2; double r = Math.sqrt(1-1/(4.0*s_2)); System.out.println(r); } } } |
Решение задачи
Каждой окружности на сфере можно сопоставить её «центр на сфере» — конец радиуса сферы, проходящего через центр окружности (никогда не лежащий на сфере). Эту точку мы будем называть «центром» окружности в кавычках, подчёркивающих, что это не «обычный» центр (рис. 2, а).
Заметим для точности, что такого определённого «центра» нет у окружностей больших кругов сферы. Но окружности, о которых идёт речь в условии задачи, заведомо не могут иметь радиус [latex]1[/latex], потому что окружности двух больших кругов не могут друг друга касаться, — они всегда пересекают друг друга в двух диаметрально противоположных точках сферы.
Точка касания двух окружностей, расположенных на сфере (см. рис. 2, б), лежит в плоскости [latex]P[/latex], проходящей через центры окружностей и центр сферы. Действительно, обе окружности симметричны относительно плоскости [latex]P[/latex], и если бы они имели общую точку по одну сторону плоскости [latex]P[/latex], то должны были бы иметь и симметричную ей общую точку по другую сторону [latex]P[/latex], а у них всего одна общая точка. Если эти окружности имеют один и тот же радиус [latex]r[/latex], то расстояние между их «центрами» равно [latex]2r[/latex], потому что на окружности большого круга, получающейся в пересечении сферы и плоскости [latex]P[/latex] (рис. 2, в), диаметры наших окружностей (чёрные отрезки) и отрезок, соединяющий их «центры» (красный), стягивают равные дуги.
Пусть [latex]A_0[/latex], [latex]A_1[/latex], [latex]A_2[/latex], [latex]\ldots[/latex], [latex]A_n[/latex] — «центры» окружностей [latex]\gamma_0[/latex], [latex]\gamma_1[/latex], [latex]\ldots[/latex], [latex]\gamma_n[/latex], о которых идёт речь в условии задачи. Тогда [latex]A_0 A_1=A_0 A_2=\ldots=A_0 A_n=A_1 A_2=A_2 A_3=\ldots=A_n A_1=2r[/latex], другими словами, [latex]A_0 A_1 A_2 \ldots A_n[/latex] — правильная [latex]n[/latex]-угольная пирамида с вершиной [latex]A_0[/latex], у которой все боковые грани — равносторонние треугольники со сторонами равными [latex]2r[/latex]. Итак, достаточно построить пирамиду, для которой выполнены эти условия, тогда точки [latex]A_0[/latex], [latex]A_1[/latex], [latex]\ldots[/latex], [latex]A_n[/latex] будут определять окружности радиуса [latex]r[/latex], с «центрами» [latex]A_0[/latex], [latex]A_1[/latex], [latex]\ldots[/latex], [latex]A_n[/latex], которые, очевидно, удовлетворяют условию задачи.
Поскольку сумма плоских углов выпуклого [latex]n[/latex]-гранного угла с вершиной [latex]A_0[/latex] меньше [latex]360^\circ[/latex]:
[latex]n\cdot60^\circ=[/latex]∠[latex]A_1 A_0 A_2+[/latex]∠[latex]A_2 A_0 A_3+\ldots+[/latex]∠[latex]A_n A_0 A_1<360^\circ[/latex], то [latex]n<6[/latex]. Для [latex]n=3[/latex], [latex]4[/latex] и [latex]5[/latex] нетрудно построить нужные пирамиды.
Пусть [latex]O[/latex] — центр сферы. Высота пирамиды [latex]h[/latex] и длина её рёбер [latex]2r[/latex] находятся из следующих соображений: радиус [latex]K A_1[/latex] основания пирамиды — катет [latex]\bigtriangleup A_0 K A_1[/latex] и боковая сторона [latex]\bigtriangleup A_1 K A_2[/latex], где ∠[latex]A_1 K A_2=2 \pi / n[/latex] (рис. 3, а , б),
[latex]\sqrt{4 r^2-h^2 \sin \frac{\pi}{n}}=r[/latex]
Из [latex]\bigtriangleup A_0 O A_1[/latex] имеем [latex]r=\frac{h}{2r}[/latex].
Отсюда [latex]h=2 r^2[/latex], [latex]r=\sqrt{1-\frac{1}{4 \sin^2 \frac{\pi}{n}}}[/latex]
Таким образом,
при [latex]n=3[/latex]: [latex]r=\sqrt{\frac{2}{3}}[/latex] [latex]\left( \sin \frac{\pi}{3}=\frac{\sqrt{3}}{2} \right)[/latex]
при [latex]n=4[/latex]: [latex]r=\sqrt{\frac{1}{2}}[/latex] [latex]\left( \sin \frac{\pi}{4}=\frac{\sqrt{2}}{2} \right)[/latex]
при [latex]n=5[/latex]: [latex]r=\sqrt{\frac{1-\sqrt{5}}{2}}[/latex]
(формулу [latex]\sin \frac{\pi}{5}=\frac{\sqrt{10-2 \sqrt{5}}}{4}[/latex] можно вывести из рисунка 4, с помощью которого строятся правильный десятиугольник и правильный пятиугольник).
Рисунки, использованные в решении
Рисунок 2:
Рисунок 3:
Рисунок 4:
Научно-популярный журнал «Квант», 1970 год, №7, страницы 51-53
Итоги:
Выведенная во время решения формула [latex]r=\sqrt{1-\frac{1}{4 \sin^2 \frac{\pi}{n}}}[/latex] справедлива только при [latex]n=3[/latex], [latex]4[/latex], [latex]5[/latex]. В случае, если задать значения больше этих, то выражение под корнем примет отрицательное значение, а в рамках данной задачи это будет говорить об отсутствии решения. Значения же меньше будут недопустимы, что было указано в условии.
Таким образом, программа выведет сообщение об отсутствии решения, если заданные значения [latex]n[/latex] отличны от вышеупомянутых. Если же условия будут соблюдаться, то задача выведет соответствующее значение радиуса.
Ссылки
Related Images:
Для отправки комментария необходимо войти на сайт.