e-olymp 9080. Три богатыря

Задача

Три богатыря шли из Бразилии в Киевскую Русь. Шли они со скоростью [latex]n[/latex] метров в минуту и должны пройти расстояние [latex]r[/latex] километров. Сколько дней им понадобится для преодоления пути?

Входные данные

Два натуральных числа [latex]n[/latex] и [latex]r[/latex] [latex]\left(n, r \leqslant10^{4}\right)[/latex]

Выходные данные

Выведите количество дней, за которое богатыри проделают свой нелегкий путь.

Тесты

Входные данные Выходные данные
1 1 10 7
2 2 8 3
3 4 70 13
4 5 68 10
5 3 12 3

Код программы

Решение

Ответом к задаче будет количество дней, за которое богатыри проделают путь. То есть нам просто надо поделить путь на скорость. Но загвоздка задачи состоит в том, что скорость дана в метрах в минуту, а нам надо перевести в километры в сутки. В одних сутках [latex]1440[/latex] минут, в километре [latex]1000[/latex] метров. Выполнив математические преобразования, получаем, что надо заданное значение скорости умножить на [latex]1.44[/latex]. Выводим результат деления пути на скорость, умноженную на [latex]1.44[/latex]. Так как получится нецелый результат, округляем значение в сторону большего с помощью функции ceil() , предварительно подключив библиотеку cmath .

Ссылки

Related Images:

e-olymp 3609. Стартовая скорость

Задача

Кристина Стуй, Олеся Повх, Елизавета Брызгина, Мария Ремень

Женская олимпийская сборная Украины в эстафете 4×100 метров на олимпийских играх в Лондоне в составе (Кристина Стуй, Олеся Повх, Елизавета Брызгина, Мария Ремень)

Несмотря на то, что женская сборная Украины в эстафете [latex]4 \times 100[/latex] метров на олимпийских играх в Лондоне в составе Кристины Стуй, Олеси Повх, Елизаветы Брызгиной и Марии Ремень выступила очень достойно и завоевала бронзовые медали, подобная мысль назойливо мучила и программиста Васю.

Как показали тщательные экспериментальные проверки, модель, построенная им в задаче «Крейсерская скорость» оказалась не совсем точной. Многочасовые наблюдения, проведённые им на тренировках как украинских спортсменок, так и спринтеров из других стран, показали, что некоторые спортсмены во время старта разгоняются, а некоторые притормаживают. Но всё равно, после [latex]25[/latex] стартовых метров дистанции они движутся далее равномерно.

Феномен с «притормаживанием» Васе удалось с точки зрения физики пояснить довольно просто. Во время старта каждый из спортсменов имеет некоторую стартовую скорость, приобретённую в результате мощного отталкивания от стартовых колодок. Эта скорость может быть либо меньше «крейсерской», либо больше. В первом случае спортсмену нужно работать над наращиванием мышц ног для увеличения силы отталкивания. Во втором – мышцы уже наращены, но в результате того, что сила сопротивления воздуха зависит от площади соприкосновения тела спортсмена с ним, во время распрямления спортсмена во время старта эта сила сопротивления возрастает и становится постоянной только после указанных выше [latex]25[/latex] стартовых метров дистанции.

Обрадованный тем, что ему удалось найти разумное объяснение разным стартовым скоростям легкоатлетов, Вася решил узнать скорость каждого из них сразу после отталкивания от стартовых колодок.

Ваша задача помочь в этом Васе, считая, что на первых [latex]25[/latex] метрах дистанции движение легкоатлета является равноускоренным, независимо от того, ускоряется он или замедляется.

Входные данные

В единственной строке задано [latex]2[/latex] вещественных числа, разделённых единичным пробелом, соответственно результат спортсмена на дистанциях [latex]100[/latex] и [latex]200[/latex] метров.

Выходные данные

В единственной строке выведите стартовую скорость спортсмена с точностью не менее [latex]6[/latex]-ти знаков после запятой.

Тесты

Входные данные Выходные данные
[latex]9.63[/latex] [latex]19.32[/latex] [latex]10.844104[/latex]
[latex]9.77[/latex] [latex]19.59[/latex] [latex]10.606721[/latex]
[latex]9.69[/latex] [latex]19.40[/latex] [latex]10.469771[/latex]
[latex]10.02[/latex] [latex]20.12[/latex] [latex]10.548908[/latex]
[latex]9.88[/latex] [latex]19.85[/latex] [latex]10.781564[/latex]

Код программы

Решение задачи

Со школы знаем формулу скорости, [latex]v=\frac{l}{t}[/latex]. Найдем из неё [latex]l=vt[/latex].
Пусть [latex]l_1[/latex] и [latex]l_2[/latex] — это расстояния, на которых спортсмен бежит с «крейсерской» скоростью соотвественно на дистанциях в [latex]100[/latex] и [latex]200[/latex] метров, где [latex]l_1=l-l_p[/latex], где [latex]l[/latex] — это длина дистанции, а [latex]l_p[/latex] — длина разгона (известно из условия задачи). Аналогично для [latex]l_2[/latex]. Заменим [latex]t[/latex] на [latex]t_1-t_p[/latex], где [latex]t_1[/latex] — время, за которое спортсмен пробегает всю дистанцию, а [latex]t_p[/latex] — время разгона на первых [latex]25[/latex]-ти метрах дистанции. Получаем формулы: [latex]l_1=v(t_1-t_p)[/latex] и [latex]l_2=v(t_2-t_p)[/latex]. Из отношения этих формул [latex]\frac {l_1}{l_2}=\frac {v(t_1-t_p)}{v(t_2-t_p)}[/latex], найдем [latex]t_p[/latex]. Имеем [latex]t_p=\frac{l_1t_2-l_2t_1}{l_2-l_1}[/latex]. Подставляем [latex]l_1=v(t_1-t_p)[/latex]. Находим «крейсерскую» скорость спортсмена, [latex]v=\frac{l_1}{t_1-t_p}[/latex]. Из уравнения равноускоренного движения
[latex]x=v_0t \times \frac{at^2}{2}[/latex], где [latex]x=25[/latex] метров (длина разгона). Находим [latex]v_0[/latex] — это и есть стартовая скорость спортсмена. Для этого заменим [latex]a[/latex] на [latex]\frac{v-v_0}{t_p}[/latex]. Приводим подобные и выражаем [latex]v_0[/latex]. В итоге получаем формулу стартовой скорости спортсмена, [latex]v_0=\frac{50-vt_p}{t_p}[/latex]. Задача решена.

Ссылки

Условие задачи на e-olymp
Код решения на ideone.com

Related Images:

e-olymp 3604. Крейсерская скорость

Задача

Выдающийся ямайский спринтер Усейн Болд выиграл на Олимпиаде-2012 две золотые медали на дистанциях 100 и 200 метров.

Эти обе дистанции нам интересны тем, что могут при определённом научном подходе, предоставлять тренеру информацию в определении оптимального состава сборной команды страны для эстафеты 4×100 метров.

Так как обе дистанции очень коротки, то тактика бега здесь довольно проста: сначала спортсмен за какое-то стартовое время (время разгона) разгоняется до своей максимально возможной на данный момент скорости, а оставшуюся часть дистанции бежит с этой постоянной скоростью, которую назовём крейсерской скоростью. Естественно, что при формировании команды в эстафету нужно на старт ставить спортсмена, который на этой дистанции показывает наилучшее время, а на 3 оставшихся этапа отбирать из числа оставшихся спортсменов трёх с наилучшей крейсерской скоростью.

Тренер легкоатлетической сборной вашей страны поручил вам, как одному из лучших программистов, помочь ему с формированием состава сборной на эстафету. Для оказания оперативной помощи тренеру вам необходимо быстро решить следующую задачу: зная результаты спортсмена на дистанциях 100 и 200 метров, определить его крейсерскую скорость. Вам также известно, что крейсерская скорость и время разгона каждого из спортсменов на протяжении ваших исследований не изменялись.

Входные данные

В единственной строке задано 2 вещественных числа, разделённых единичным пробелом, соответственно результат спортсмена на дистанциях 100 и 200 метров.

Выходные данные

В единственной строке выведите крейсерскую скорость спортсмена с точностью не менее 6-ти знаков после запятой.

Тесты

Входные данные Выходные данные
9.63  19.32 10.319917
12.49  21.30 11.350737
7.46  13.58 16.339869

Код программы:

Решение задачи

Для решения этой задачи мы воспользуемся формулами скорости при равноускоренном движении. Нам было дано время прохождения двух дистанций в 100 метров и 200 метров. Так как спортсмен разгоняется на дистанции 100 метров, то оставшиеся 100 метров из 200 он бежит с постоянной скоростью. Чтобы узнать время за которое он пробегает вторые 100 метров, мы вычитаем из второго значения времени первое. Дальше мы пользуемся формулой нахождения скорости по расстоянию и времени [latex]\frac{s}{t}[/latex]. Полученая скорость и будет крейсерской скоростью.

Ссылки

  • Задача на сайте e-olymp
  • Код решения в Ideone

Related Images:

Ю 4.37

Задача

Автостоп-2. Из пункта А в пункт В, между которыми [latex]s[/latex] км, выехал велосипедист с постоянной скоростью [latex]v_{0}[/latex] км/ч. Навстречу ему — из пункта В — другой путешественник решил добраться «автостопом» — на разных видах попутного транспорта. Перед каждым участком он [latex]\tau _{i}[/latex] минут «голосует», ожидая попутного транспорта, затем движется [latex]t _{i}[/latex]  часов со скоростью [latex]v _{i}[/latex] км/час ( величины [latex]\tau _{i}, t _{i}, v _{i}, i=1,2,\ldots,n[/latex]  заданы в соответствующих массивах). Через какое время после старта и на каком расстоянии от пункта А путники встретятся?

Тесты

s [latex]v_{0}[/latex] n [latex]\tau _{i}[/latex] [latex]t _{i}[/latex] [latex]v _{i}[/latex] place, км  time, ч Комментарий
100.0 30.0  1 60.0 1.0 40.0 60.0 2.0 Пройден
100.0 10.0 1 0.0 1.0 40.0 Путники не доехали до места встречи Не пройден
130.0 15.0 2 0.0 3.0 1.0 2.6 40.0 33.3 2.587267 38.809006 Пройден

 

Код программы

Вначале программы вводим во входной поток и считываем данные. Далее, в цикле, проверяем несколько условий, таких как:

  1. Пока второй ждал — первый уже проехал весь путь.
  2. Если после i-ого этапа (т.е. после ожидания транспортного средства, поездки на нем) сумма пройденного пути второго и первого путника больше, чем весь путь.

Далее высчитываем само место и время встречи.
В конце программы, за циклом, проверяем каков общий пройденный путь двух путников и если он меньше всего пути, то выводим сообщение, что они так и не встретились.

Код на Java

 

Related Images:

Ю3.8

«Отскоки»

Задача: Материальная точка бросается на горизонтальную плоскость со скоростью [latex]V[/latex] и под углом [latex]\alpha[/latex] к ней ( плоскости ). При каждом ударе о плоскость, кинетическая энергия точи уменьшается в [latex]\beta[/latex] раз. Найти абсциссы первых [latex]n[/latex] точек касания. Сопротивлением воздуха пренебречь.

По умолчанию примем количество интересующих нас отскоков равным 3.

[latex]V[/latex](speed)[latex]m/c[/latex] [latex]\alpha[/latex](corner)  [latex]\beta[/latex] Первая координата Вторая координата Третья координата Комментарий
10 15 2 5.09858 7.64787 8.92252 Тест пройден
8 30 4 5.65184 7.06480 7.41804 Тест пройден
27 45 3 74.3373 99.1164 107.376 Тест пройден
17 35 3 27.6926 36.9234 40.0004 Тест пройден
13 0 5 0.00000 0.00000 0.00000 Тест пройден

Замечание:

По неизвестной мне причине (думаю на погрешность округления) [latex]sin( \pi)[/latex] при вычислениях равен 1.24879e-15.

Исходный код:

Для решения задачи необходимо вспомнить уроки физики в начале десятого класса, а именно главу о движении под углом к горизонту. Воспользуемся формулой расстояния полета материальной точки [latex]S=\frac{V^2sin(2\alpha) }{g}[/latex] . По условию задачи сказано, что кинетическая энергия уменьшается при каждом отскоке в [latex]\beta[/latex] раз. Если рассмотреть формулу кинетической энергии: [latex]E_{k}=\frac{ mV^2 }{2}[/latex]- можно заметить, что [latex] m[/latex] (масса) является константой, значит изменяться может только [latex]V^2[/latex] (скорость тела в квадрате). Если условится, что материальная точка начинает движение в начале координат, то координата первого отскока будет равна [latex]S[/latex], второй — [latex]S+S_{1}[/latex], третьей — [latex]S+S_{1}+S_{2}[/latex], n-ой — [latex]S+…+S_{n-1}[/latex].

Алгоритм:

  1. Объявление переменных и константы(ускорение свободного падения).
  2. Вывод поясняющей информации.
  3. Ввод значений переменных.
  4. Проверка недопустимых ситуаций:
    • Проверка угла: значения угла выше 90 градусов или отрицательное значение противоречат условию задачи.
    • Проверка скорости: отрицательное значение будет означать движение в противоположную интересующей нас сторону.
    • Проверка коэффициента уменьшения кинетической энергии: это число должно быть хотя бы положительным.
    • Проверка числа интересующих нас отскоков: это должно быть натуральное число.
  5. Вычисление вспомогательных величин (двойной угол, скорость в квадрате).
  6. Создание вычислительного цикла.
    • Вывод значений.
  7. Окончание работы.

 Ссылка на Ideone.

Related Images:

Ю 2.31

Задача

График движения путников к задаче Ю 2.31


График движения путников к задаче Ю2.31

Встреча. Из пункта А в пункт В выехал велосипедист со скоростью [latex]v_{0} [/latex] км/час. Одновременно навстречу ему из пункта В двинулся «автостопом» другой путник.[latex]s_{1} [/latex] м он двигался со скоростью [latex]v_{1} [/latex] м/час, [latex]s_{2} [/latex] м — со скоростью [latex]v_{0} [/latex] км/час, [latex]s_{3} [/latex] м — со скоростью [latex]v_{3} [/latex] км/час. Через сколько часов после старта и в какой точке путники встретились?

 Тесты

v0, км/час v1, м/час v3, км/час s1, м s2, м s3, м place, км time, час Комментарии
40 15000 10 20000 40000 40000 66.667 1.667 Пройден (встреча на первом промежутке)
10 5000 60 10000 60000 30000 55.0 5.5 Пройден (встреча на первом промежутке)
8 5000 30 10000 10000 80000 37.368 4.671 Пройден (встреча на первом промежутке)
-300 30000 23333 22222 5454 555.1 Неправильно введены данные Не пройден
10 2222 3333 0 -4444 11.6 Неправильно введены данные Не пройден

Код программы: 

Можно предположить, что весь путь в задаче представлен суммой [latex]ss=s_{1}+s_{2}+s_{3}[/latex]. Для начала переведем все величины  в единицы СИ:

Из метров в километры:

[latex]s_{1}=s_{1}*0.001 \Leftrightarrow s_{1}=\frac{s_{1}}{1000}[/latex],

[latex]s_{2}=s_{2}*0.001 \Leftrightarrow s_{2}=\frac{s_{2}}{1000}[/latex],

[latex]s_{3}=s_{3}*0.001 \Leftrightarrow s_{3}=\frac{s_{3}}{1000}[/latex].

Из метров/час в километры/час: [latex]v_{1}=v_{1}*0.001 \Leftrightarrow v_{1}=\frac{v_{1}}{1000}[/latex]

Найдем место встречи. Тут может быть три случая:

  1. Встреча двух путников на первом промежутке пути. Тогда время встречи можно вычислить по формуле: [latex]time = \frac{ss}{( v_{0} + v_{1} )}[/latex] , а место встречи —  [latex]place = time * v_{0}[/latex]
  2. Встреча двух путников на втором промежутке пути: Тогда время встречи можно вычислить по формуле: [latex]time =\frac{ss — s_{1} — ( v_{0} * t_{1} ) }{ v_{0} + v_{0} }[/latex] , а место встречи — [latex]place = ( t_{1} + time ) * v_{0}[/latex].
  3. Встреча двух путников на третьем промежутке пути: Тогда время встречи можно вычислить по формуле: [latex]time = \frac{ ss — s_{1} — s_{2} — ( v_{0} * t_{2} )}{ v_{0}+ v_{3} }[/latex], а место встречи — [latex] place = ( t_{1}+t_{2} + time ) * v_{0}[/latex].

Если путники встречаются на первом промежутке пути, то их скорости суммируются (т.к. тела движутся на встречу друг к другу), при делении всего пути на сумму этих скоростей получим время встречи, расстояние можно найти умножив время встречи на скорость первого путника.

Если путники встречаются на втором промежутке пути, то их скорости аналогично суммируются, но в формуле нахождения времени встречи учитывается путь, пройденный путниками за первый промежуток времени, эту разность делим на сумму скоростей и получаем время встречи. Для того чтобы найти место встречи сложим время путников в пути и время встречи поделим на скорость и найдем место встречи.

Аналогично и на третьем промежутке пути. В формуле нахождения времени встречи учитывается путь, пройденный путниками за первый и за второй промежутки времени, эту разность делим на сумму скоростей и получаем время встречи.

Код на Java

 

Related Images: