e-olymp 1503. Вписанные треугольники

Задача

Пример первого теста на графике

На границе окружности с центром в начале координат и радиусом $r$ заданы $n$ различных точек. Поскольку все точки расположены на одной окружности, то любые три из них не коллинеарны, и поэтому образуют треугольник. Вам необходимо вычислить суммарную площадь всех этих $C_{n}^3$ треугольников.

Входные данные
Состоит из не более чем $16$ тестов. Каждый тест начинается двумя целыми числами $n \left(0 ≤ n ≤ 500\right)$ и $r \left(0 < r ≤ 100\right)$. Через $n$ обозначено количество точек, а через $r$ радиус окружности. Центр окружности находится в центре координат. Дальше следуют $n$ строк, каждая из которых содержит действительное число $θ \left(0 ≤ θ < 360 \right)$, которое определяет угол в градусах между точкой и направлением $x$-оси. Например, если $θ$ равно $30$ градусов, то соответствующая точка имеет декартовы координаты $\left(r \cdot \cos(30°), r \cdot \sin(30°) \right)$. Последняя строка содержит $n = r = 0$ и не обрабатывается.

Выходные данные
Для каждого теста в отдельной строке вывести целое число — суммарную площадь (округленную до ближайшего целого) всех возможных треугольников, образованных заданными $n$ точками.

Тесты

Входные данные Выходные данные
5 10
10
100
300
310
320
3 20
10
100
300
0 0
286
320
3 5
25
176
243
0 0
25
4 20
30
80
130
330
0 0
822
2 7
30
230
0 0
0

Код программы

Решение задачи

Радианная мера точек заносится в массив, после чего массив сортируется по возрастанию с помощью функции  sort().

В переменную res  изначально заносится площадь, равная площади кругов радиуса $r$,
то есть значение $C_{n}^3 \cdot \pi \cdot r^2 = n(n-1)(n-2)(n-2)\pi \cdot \frac{r^2} {6}$. Значение $\frac{r^2} {2}$ присваивается переменной r2, а sq – площадь одного круга, то есть $\pi \cdot r^2$.

Перебираются пары точек, а затем вычисляется угол.
Если угол меньше, то проходимся по меньшему сегменту, площадь которого равна $\pi r^2-0.5r^2(\alpha-\sin \alpha)$, $\alpha = 2\pi -\alpha$. В ином случае мы проходим по большему сегменту.
В любом случае переменной s  присваивается площадь сегмента, который мы проходим от $P_{i}$ к $P_{j}$ при движении против часовой стрелки.

Количество точек, лежащих на сегменте, равно $n-(j-i+1)$.
Значит, из переменной res необходимо вычесть площадь сегмента s такое количество раз, которому равно количество точек, то есть pts .

Количество точек, которые лежат на сегменте площади s , равно $n-2-  $  pts.
Площадь противоположного сегмента равна разности площади круга и сегмента. Для получения ответа вычитаем площадь противоположного сегмента из переменной res такое количество раз, которое равно значению переменной  pts и выводим полученное значение.

Ссылки

Условие задачи на e-olymp.com
Решение задачи ideone.com

Related Images: