Задача
После успешного обучения Атрея стрельбе из лука «Когтя» Фэй решила не останавливаться на достигнутом и открыть целый кружок стрельбы из лука.
На занятие кружка пришли $n$ учеников. Фэй пронумеровала их целыми числами от $1$ до $n$. В начале занятия ученики встали вдоль координатной прямой, заблаговременно нарисованной на полу, причем i-й ученик стоял в точке с координатой $x_i$. Получилось так, что координаты учеников строго возрастали, то есть $x_i \lt x_{i+1}$ для всех $i$ от $1$ до $n-1$.
У каждого из учеников есть свой волшебный лук, который характеризуется своей дальностью $r_i$ и силой $c_i$. Оба параметра — целые положительные числа. Когда ученик совершает выстрел из лука, магический снаряд начинает лететь вдоль координатной прямой в сторону увеличения координаты. Снаряд летит до тех пор, пока его сила положительна. В момент выстрела сила заряда равна силе лука, из которого совершается выстрел. Каждый раз, когда снаряд пролетает очередные $r_i$ единиц расстояния вдоль прямой, он теряет одну единицу силы.
Если ученик произвел выстрел, и снаряд, выпущенный им, достиг следующего по порядку вдоль прямой ученика, снаряд прекращает свой полет, а ученик, которого достиг снаряд, внезапно решает, что ему тоже надо произвести выстрел, и совершает его. Ученик совершит выстрел, даже если снаряд достиг его, имея силу $0$.
Фэй хочет, чтобы каждый ученик совершил хотя бы один выстрел. Для этого она может дать команду некоторым ученикам сделать это, после чего эти ученики совершат выстрел, что может повлечь за собой новые выстрелы других учеников.
Помогите Фэй определить минимальное количество учеников, которым надо дать команду совершить выстрел, чтобы каждый ученик в результате совершил хотя бы один выстрел.
Входные данные
Первая строка содержит количество учеников $n$ $(1 \leqslant n \leqslant 1000)$ на кружке Фэй.
Каждая из следуюших $n$ строк содержит три целых числа $x_i$, $r_i$ и $c_i$ ($1 \leqslant x_i \leqslant 10^9$, $1 \leqslant r_i$, $c_i \leqslant 100$) — координату очередного ученика, а также дальность и силу его лука соответственно. Гарантируется, что $x_i \lt x_{i+1}$ для всех $i$ от $1$ до $n-1$.
Выходные данные
Выведите минимальное количество учеников, которым надо дать команду совершить выстрел, чтобы каждый ученик в результате совершил хотя бы один выстрел.
Тесты
№ | ВХОДНЫЕ ДАННЫЕ | ВЫХОДНЫЕ ДАННЫЕ |
1 | 5 1 3 3 5 1 2 8 2 3 10 1 2 11 3 2 |
2 |
2 | 6 1 3 5 4 2 2 7 4 3 10 1 2 11 3 2 13 4 3 |
1 |
Код
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 |
#include <iostream> using namespace std; struct archerProfile { unsigned long x; unsigned long r; unsigned int c; }archer[1000]; int main(){ int n; int commands = 1; cin >> n; for (int i = 0; i < n; i++) { cin >> archer[i].x >> archer[i].r >> archer[i].c; } for (int i = 0; i < n - 1; i++) { unsigned long long distanceBetweenArchers = archer[i + 1].x - archer[i].x; if (distanceBetweenArchers > archer[i].c * archer[i].r) { commands += 1; } } cout << commands; return 0; } |
Решение
Для решения задачи, мы должны найти расстояние между лучниками, то есть $x_{i+1}-x_i$, после чего найти максимальное расстояние, которое пролетит стрела у $x_{i}$ лучника умножив силу его лука $c_i$ и расстояние $r_i$, после чего сделать проверку, если расстояние между лучниками больше чем максимальное расстояние которое пролетит стрела, то мы дадим команду совершить ещё один выстрел.