e-olymp 1947. Конденсация графа

Условие задачи:

Для заданного ориентированного графа найти количество ребер в его конденсации.

Конденсацией орграфа G называют такой орграф G’, вершинами которого служат компоненты сильной связности G, а дуга в G’ присутствует только если существует хотя бы одно ребро между вершинами, входящими в соответствующие компоненты связности.

Конденсация графа не содержит кратных ребер.

Входные данные:

Первая строка содержит два натуральных числа n и m (n10000, m100000) — количество вершин и ребер графа соответственно. Каждая из следующих m строк содержит описание ребра графа. Ребро номер i описывается двумя натуральными числами [latex]b_{i}[/latex], [latex]e_{i}[/latex](1 ≤ [latex]b_{i}[/latex], [latex]e_{i}[/latex] ≤ n) — номерами начальной и конечной вершины соответственно. В графе могут присутствовать кратные ребра и петли.

Выходные данные:

Количество ребер в конденсации графа.

Тесты:

Входные данные Выходные данные
4 4 2
2 1
3 2
2 3
4 3
6 9 1
1 2
2 4
4 1
4 2
3 2
2 6
3 5
5 3
6 2

Описание решения задачи:

Компонентой сильной связности называется такое подмножество вершин C, что любые две вершины этого подмножества достижимы друг из друга. Отсюда следует, что конденсация это граф, получаемый из исходного графа сжатием каждой компоненты сильной связности в одну вершину. Отсюда имеем структуру [latex]vertex[/latex]. Основным фундаментом данного алгоритма является следующая теорема: Пусть [latex]C[/latex] и [latex]{C}'[/latex] — две различные компоненты сильной связности, и пусть в графе конденсации между ними есть ребро ([latex]C[/latex],[latex]C'[/latex]). Тогда время выхода из [latex]C[/latex] будет больше, чем время выхода из [latex]{C}'[/latex]. Базируясь на этом, выполним серию обходов в глубину с помощью функции [latex]dfs[/latex] _ [latex]g[/latex], посещая весь граф. С визитом всех вершин графа,запоминаем для каждой время выхода, записывая это в созданный [latex]list[/latex]. Далее строится транспонированный граф. Запускаем серию обходов в глубину(функция [latex]dfs[/latex] _ [latex]tg[/latex]) этого графа в порядке, определяемом списком [latex]list[/latex] (а именно, в обратном порядке, т.е. в порядке уменьшения времени выхода). Каждое множество вершин, достигнутое в результате рекурсивного запуска обхода, и будет очередной компонентой сильной связности. Окрасим все вершины каждой сильной компоненты связности в один уникальный цвет, для этого зададим в структуре параметр [latex]colour[/latex]. Число цветов окраски будет равно количеству компонент сильной связности. Далее перебираем все ребра исходного графа. Если ребро соединяет вершины разного цвета, то оно принадлежит конденсации графа. Для каждого ребра ([latex]a[/latex], [latex]b[/latex]), для которого [latex]components[a].colour[/latex] [latex]≠[/latex] [latex]components[b].colour[/latex], занесем во множество [latex]ribs[/latex] данную пару. Количество элементов во множестве [latex]ribs[/latex] будет равняться числу ребер в конденсации графа.

Условие задачи
Код задачи на с++
Засчитанное решение на e-olymp

e-olimp 4852. Кратчайшее расстояние

Задача

Дан ориентированный граф. Найдите кратчайшее расстояние от вершины x до всех остальных вершин графа.

Входные данные

В первой строке содержатся два натуральных числа [latex]n[/latex] и [latex]x[/latex]  [latex]\left ( 1\leq n\leq 1000,1\leq x\leq n \right )[/latex] — количество вершин в графе и стартовая вершина соответственно. Далее в [latex]n[/latex] строках по [latex]n[/latex] чисел — матрица смежности графа: в [latex]i[/latex]-ой строке на [latex]j[/latex]-ом месте стоит [latex]1[/latex], если вершины [latex]i[/latex] и [latex]j[/latex] соединены ребром, и [latex]0[/latex], если ребра между ними нет. На главной диагонали матрицы стоят нули.

Выходные данные

Выведите через пробел числа [latex]d_1,d_2,[/latex][latex]\ldots[/latex][latex],d_i[/latex], где [latex]d_i[/latex] равно[latex]-1[/latex], если путей между [latex]x[/latex] и [latex]i[/latex] нет, в противном случае это минимальное расстояние между [latex]x[/latex] и [latex]i[/latex].

Тесты 

 Входные данные  Выходные данные
3 1
0 1 0
0 0 0
0 0 0
 0 1 -1
6 5
0 1 1 0 0 0
1 0 0 0 0 0
1 1 0 0 0 0
0 0 0 0 1 0
0 0 1 1 0 0
0 1 0 0 0 0
2 2 1 1 0 -1
3 1
0 1 0
1 0 1
0 1 0
0 1 2

 

Реализация

Засчитанное решение на e-olimp.com

Код на ideone.com

Решение

Для решения данной задачи необходимо применить  алгоритм Дейкстры . А именно, мы храним в массиве текущую длину наиболее короткого пути из заданной вершины во все остальные вершины графа. Положим, что изначально длина такого пути равна бесконечности ( при реализации просто используем достаточно большое число). А длина пути из заданной вершины до самой себя равна нулю. Обозначим, что вершина может быть помечена или не помечена. Изначально все вершины являются не помеченными. Далее выбираем  вершину [latex]v[/latex] с наименьшей длиной пути до заданной вершины и помечаем ее. Тогда просматриваем все ребра, исходящие из вершины [latex]v[/latex]. Пусть эти ребра имеют вид  [latex]\left ( v,t_0 \right )[/latex]. Тогда для каждой такой вершины [latex]t_0[/latex] пытаемся найти наиболее коротки путь из заданной вершины. После чего снова выбираем еще не помеченную вершину и проделываем вышеописанный алгоритм снова до тех пор, пока не останется не помеченных вершин. Найденные расстояния и будут наименьшими.

e-olymp 1108. Червячные дыры

Условие:

В 2163 году были обнаружены червячные дыры. Червячная дыра представляет собой тоннель сквозь пространство и время, соединяющий две звездные системы. Эти дыры имеют следующие свойства:

  • Червячные дыры являются односторонними.
  • Время путешествия по любому тоннелю равно нулю.
  • Червячная дыра имеет два конца, каждый из которых находится в звездной системе.
  • Звездная система в своих границах может иметь несколько концов червячных дыр.
  • По некоторой неизвестной причине начиная с нашей Солнечной системы всегда можно достигнуть любую другу звездную систему перемещаясь некоторой последовательностью червячных дыр (возможно, это потому что Земля является центром универсума).
  • Между любой парой звездных систем существует не более одной червячной дыры в любом из направлений.
  • Оба конца червячной дыры не могут находиться в одной звездной системе.
  • Каждая червячная дыра перемещает путешественника на определенное константное количество лет вперед или назад. Например, одна дыра может переместить на 15 лет в будущее, а другая на 42 года в прошлое.

Известный физик, живущий на Земле, хочет использовать червячные дыры для исследования теории Большого Взрыва. Поскольку двигатель искривления пространства еще не изобретен, невозможно напрямую путешествовать между звездными системами. Однако это можно делать при помощи червячных дыр.

Ученый хочет достигнуть цикла червячных дыр, который поможет ему попасть в прошлое. Двигаясь по этому циклу несколько раз, можно прийти ко времени, когда имел место Большой Взрыв и наблюдать его собственными глазами. Напишите программу, которая определяет существование такого цикла.

Входные данные

Первая строка содержит количество звездных систем n (1n1000) и количество червячных дыр m (0m2000). Звездные системы пронумерованы от 0 (наша солнечная система) до n1. Каждая червячная дыра описывается в отдельной строке и содержит три целых числа x, y и t. Эти числа указывают на возможность передвижения из звездной системы с номером x в звездную систему с номером y, при этом время изменяется на t (-1000t1000) лет.

Выходные данные

Cтрока содержит информацию, возможно ли в заданном множестве систем попасть в минус бесконечность во времени используя червячные дыры. Выводить следует строку «possible» или «not possible«.

Тесты:

Входные данные Выходные данные
3 3
0 1 1000
1 2 15
2 1 -42
possible
4 4
0 1 10
1 2 20
2 3 30
3 0 -60
not possible
3 3
0 1 -100
1 2 1
2 1 0
not possible

Решение:

Описание решения:

Решение данной задачи сводится к нахождению отрицательного цикла в ориентированном графе. Необходимо воспользоваться алгоритмом Форда-Беллмана. Создадим вектор на [latex]n[/latex] элементов и заполним его нулями. Алгоритм основан на том, что если в графе размерностью [latex]n[/latex] элементов нет отрицательных циклов, то после [latex]n-1[/latex] прохождения, изменения в массива кратчайших расстояний не будет. Поэтому, будем выполнять следующее [latex]n[/latex] раз:

  1. Возьмем первое ребро из вектора [latex]canals[/latex], и проведем сравнение: если исходная длина пути конца данного ребра из исходного вектора [latex]distance[/latex] больше, чем сумма длины пути начала вектора и стоимости прохода по данному ребру [latex]canals[].t[/latex], то изменим в векторе [latex]distance[/latex] элемент с номером конца исходного ребра, и изменим индикатор изменений [latex]x[/latex], чтобы показать, что в ходе данного прохода были внесены изменения.
  2. Переходим к следующему ребру.

Если после во время последнего прохода ни разу не была изменена переменная [latex]x[/latex], то это значит, что в графе нет циклов отрицательной длины, и тогда выводим «not possible». Иначе, выводим «possible».

Засчитанное решение на e-olymp.com.

Код решения на ideone.com.

e-olymp 1948. Топологическая сортировка

Условие:
Дан ориентированный невзвешенный граф. Необходимо топологически отсортировать его вершины.

Входные данные

В первой строке содержатся количество вершин [latex]n[/latex] (1 ≤ [latex]n[/latex] ≤ 100000) и количество рёбер [latex]m[/latex] (1 ≤[latex]m[/latex] ≤ 100000) в графе. В следующих [latex]m[/latex] строках перечислены рёбра графа, каждое из которых задаётся парой чисел — номерами начальной и конечной вершины.

Выходные данные

Вывести любую топологическую сортировку графа в виде последовательности номеров вершин. Если граф невозможно топологически отсортировать, то вывести -1.

Тесты:

Входные данные Выходные данные
6 6
1 2
3 2
4 2
2 5
6 5
4 6
4 6 3 1 2 5
2 2
1 2
2 1
-1
4 5
1 2
1 3
3 4
2 4
1 4
1 3 2 4
4 5
1 2
1 3
3 4
2 4
4 1
-1

Решение:

Описание решения:

Для решения данной задачи необходимо было воспользоваться алгоритмом топологической сортировки, посредством поиcка в глубину. Чтобы применить данный алгоритм, необходимо было проверить граф на ацикличность с помощью алгоритма поиска в глубину. Это было реализовано функцией [latex]cyclic[/latex], которая проходила по всему графу в поиске цикла. Если цикл был найден, то функция меняла значение переменной [latex]cycle_st[/latex]. Далее, если цикл был найден, то программа выводить -1, иначе применяется алгоритм топологической сортировки, реализованный в двух функциях:

и

После выполнения этих функций был получен топологически отсортированный список вершин, но в обратном порядке. Поэтому разворачиваем его с помощью функции [latex]reverse[/latex] .

Засчитанное решение на e-olymp.com.

Код решения на ideone.com.

e-olymp 2267. Journey

The army of Rzeczpospolita is moving from the city Kostroma to the village Domnino. Two hetmans, Stefan and Konstantin, lead the army.

Stefan procured the roadmap of Kostroma province, and every night he routes the army from one village to the other along some road. Konstantin bought the map of secret trails between villages in advance, and every day he leads the march along the one of such trails. Each hetman asks their guide Ivan Susanin for a route before each march.

The length of each road is indicated on Stefan’s map. So Stefan knows the minimal distance from each village to the Domnino village according to his map. Similarly Konstantin knows the minimal distance from each village to Domnino village along trails on his map.

Ivan Susanin does not want to be disclosed as a secret agent, so each time he chooses a road (for Stefan) or a trail (for Konstantin) so, that the minimal distance to the Domnino village according to the map owned by the asking hetman is strictly decreasing.
Maps
Help Ivan to find the longest possible route to the Domnino village.

Input

The first line contains three integer numbers [latex]n, s[/latex] and [latex]t[/latex] — number of villages in Kostroma province, and numbers of start and Domnino village [latex](2 \le n \le 1000; 1 \le s; t \le n)[/latex]. Villages are numbered from [latex]1[/latex] to [latex]n[/latex]. Start and Domnino villages are distinct.

Two blocks follow, the first one describing Stefan’s map, and the second one describing Konstantin’s map.

The first line of each block contains an integer number [latex]m[/latex] — the number of roads/trails between villages [latex](n-1 \le m \le 100000)[/latex]. Each of the following [latex]m[/latex] lines contains three integer numbers [latex]a, b[/latex], and [latex]l[/latex] — describing the road/trail between villages [latex]a[/latex] and [latex]b[/latex] of length [latex]l[/latex] [latex](1 \le a, b \le n; 1 \le l \le 10^6)[/latex].

Rzeczpospolita army can move in any direction along a road or a trail. It’s guaranteed that one can travel from any village to any other using each of the maps. The army starts its movement in the evening from the village number and moves one road each night and one trail each day.

Output

Output the total length of the longest route that Ivan Susanin can arrange for Rzeczpospolita army before reaching the Domnino village (along the roads and trails). If Ivan Susanin can route the army forever without reaching the Domnino village, output the number «[latex]-1[/latex]».

Tests

Input Output
1 5 1 5
5
1 2 2
1 4 2
2 3 1
3 4 1
5 3 1
4
1 2 2
2 4 2
2 3 1
2 5 2
-1
2 3 1 3
4
1 2 10
2 3 10
1 3 20
2 3 30
4
2 1 10
1 3 10
1 1 10
2 3 10
20

Algorithm

The problem has been resolved together with Sploshnov Kirill.

So, we are dealing with a rather cumbersome task for the graphs, therefore we analyze it consistently. To get started we define the data structure

because dealing with the routes and subsequently, we will have to color our edges. For convenience, we don’t think about two maps as about different graphs, and can establish one graph, where edges of each map are painted in a different color.
For example edges of first map color in RED, and the other in BLUE. Then select the first map is equivalent to passing by red edges, or blue otherwise. In this way, route, that we are looking for, should be based on the successively alternating colors of the edges.
Proceed directly to the solution.
From the condition is understandable, that each hetman knows the shortest path to the final village. This data will be needed for us too, so for each map (edges of the same color) use Dijkstra’s algorithm and find the shortest path from each vertex to the target.  (Function   void djikstra(vector<Route>* graph, int* distancesInColoredGraph, unsigned int quantityOfAllVertices, int finishVertex, int color); ).  We need absolutely standard Dijkstra’s algorithm with the only difference that the edges of the opposite color aren’t available. You can learn more about Dijkstra’s algorithm in the sources of information listed at the end of the article.
Continue analyzing the condition, we understand, that we can’t pass over the edges so, that the shortest distance to the final vertex increased. This will help us to simplify the graph, and significantly reduce the number of possible variants of passage, namely, any bidirectional edge will be either removed completely or strictly directed.  Then, passing on to the edges of the same color in each map, if it doesn’t satisfy the specified condition coloring it as DELETED. (Function  void simplify(vector<Route>* graph, int* distance, unsigned int quantityOfAllVertices, int color); ).
Now we can get started with the search for the longest route. There are two options: either there is the longest path, or we can walk along the edges infinitely, if it does not contradict the statement of the problem, that is, in the combined of two maps graph there is a cycle. So we organize checks on acyclic. Now we have the right to pass along the edges only alternating colors at each step. In order to find a cycle, we use vertex coloring, and will explore the graph until we try to treat already colored vertex or not conclude that it is acyclic.  (Function  bool cyclicDFS(vector<Route>* graph, int* passedInRedGraph, int* passedInBlueGraph, int currentVertex, int color); ). This algorithm can be obtained after detailed acquaintance with the usual cycle searching algorithm (reference to the source is located at the end of the article). If we find any loop in this graph, then our job is over and we should just output «[latex]-1[/latex]».
Otherwise, make sure that the graph is acyclic, we are looking for the longest route. As our graph has been simplified and has no cycles, and all edges are directed, then the task of finding this way becomes computationally simple. For this declaring an array of longest distance dynamically, along the way memorizing the already calculated values, sequentially find the maximum length of the route until we arrive at the finish village. (Function  int maxDistDFS(vector<Route>* graph, int* maxDistancesInRedGraph, int* maxDistancesInBlueGraph, int currentVertex, int color) ). This will be the answer to the task.

Rest details of the implementation can be found in the code of the program or in the sources of information listed at the end of the article.

Code

Links

e-olymp 2401. Обход в ширину

Андрей Яроцкий
Андрей Яроцкий

Latest posts by Андрей Яроцкий (see all)

Задача 2401

Условие

Дан неориентированный граф. В нём необходимо найти расстояние от одной заданной вершины до другой.

Входные данные

В первой строке содержится три натуральных числа [latex]n, s[/latex] и [latex]f (1 [/latex] [latex]\le[/latex] [latex]s, f[/latex] [latex]\le[/latex] [latex]n[/latex] [latex]\le[/latex] [latex]100)[/latex] — количество вершин в графе и номера начальной и конечной вершин соответственно. Далее в n строках задана матрица смежности графа. Если значение в [latex]j[/latex]-м элементе [latex]i[/latex]-й строки равно [latex]1[/latex], то в графе есть направленное ребро из вершины [latex]i[/latex] в вершину [latex]j[/latex].

Выходные данные

Вывести минимальное расстояние от начальной вершины до конечной. Если пути не существует, выведите [latex]0[/latex].

Тесты

Входные данные Выходные данные
1 1 1 1
1
0
2 3 1 3
0 1 0
1 0 0
0 0 0
0
3 4 4 3

0 1 1 1

1 0 1 0

1 1 0 0

1 0 0 0

2
4 5 1 4
0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0
2

 

Решение

Для решения данной задачи необходимо использовать алгоритм «Поиск  в ширину». Суть данного алгоритма полагает в том, что все вершины, начиная с начальной, помещаются в структуру очередь [latex](queue)[/latex] в порядке удаления от начальной вершины. По мере заполнения очереди, каждой вершине приписывается величина расстояния [latex](dist)[/latex] от начальной вершины, после чего соответствующая вершина помечается как пройденная [latex](used)[/latex] и её расстояние от начальной вершины более не переписывается даже при повторном просмотре. Таким образом, каждой вершине, для которой существует путь, соединяющий её с начальной вершиной, сопоставляется минимальное расстояние от нее до начальной вершины. Если такого пути не существует, расстояние остается равным нулю. Подробней об этом алгоритме можно прочесть здесь

Ссылки

Код программы на ideone.com

Условие задачи

Решенная задача