Ю2.27 Шашечный эндшпиль

Задача из сборника задач по программированию Юркина А.Г. 2002 г.
Условие задачи:
В шашечном эндшпиле остались белая дамка и две черных пешки, позиции которых известны. Ход белых. Сможет ли дамка срубить одну или сразу обе пешки?
Continue reading

КМ259(б). Квартеты из клеток

Антон Куперман
Антон Куперман

Latest posts by Антон Куперман (see all)

Задача

Назовем квартетом четверку клеток на клетчатой бумаге, центры которых лежат в вершинах прямоугольника со сторонами, параллельными линиям сетки. Какое наибольшее число квартетов, не имеющих общих клеток, можно разместить в прямоугольнике [latex]m\times n[/latex] клеток?

Входные данные

[latex]m[/latex],[latex]n[/latex]

Вывод

[latex]x[/latex]-кол-во квартетов.

Тесты

m n x
8 6 12
16 7 24
17 8 29,75
15 11 37

Код

Решение

Если [latex]m[/latex] и [latex]n[/latex] четные, то в прямоугольнике [latex]m\times n[/latex] можно разместить [latex]m/n[latex] квартетов. Если [latex]m[/latex] четное, а [latex]n[/latex] нечетное (и наоборот), то квартетов — [latex]m(n-1)/4[/latex]. И наконец если [latex]m[/latex] и [latex]n[/latex] — нечетные, то формула будет выглядеть так: [latex]m(n-1)-2/4[/latex].

КМ.72

Лена Бригарь
Лена Бригарь

Latest posts by Лена Бригарь (see all)

Задача из журнала «Квант» №72

Условие:
Пусть p — произвольное вещественное число. Найдите все такие x, что сумма кубических корней из чисел 1 – x и 1 + x равна p.

Тесты:

Входные данные Выходные данные
1 0.6 No solutions
2 1.4 x1 = -0.997217
x2 = 0.997217
3 2 x=0
4 1.79 x1 = -0.814516
x2 = 0.814516

Код

Решение:
Рассмотрев условие, приходим к такому уравнению [latex] \sqrt[3]{\left(1+x \right)}+\sqrt[3]{\left(1-x \right)}=p [/latex] , где p — параметр, который будет задаваться на входе.Ответы для р будут существовать на промежутке [latex] \left[\sqrt[3]{2}; 2\right] [/latex] . Если р не входит в промежуток, то выводим «нет решений». Если р=2, то оба корня совпадут, по этому выводим один «х=0». Для остальных случаев ответом будет два корня.

Ссылки:
Решение на ideone http://ideone.com/A8DXC9
Условие http://www.kvant.info/zkm_1971.htm
Решение wolfram http://www.wolframalpha.com/input/?i=(1%2Bx)%5E(1%2F3)+%2B+(1-x)%5E(1%2F3)+%3D+p

Mif 9. Пересечение отрезков

Задача

Пересекаются ли отрезки. Для двух отрезков [latex]AB[/latex] и [latex]CD[/latex], заданных целочисленными координатами вершин на плоскости, определить имеют ли они общие точки.

Входные данные

Координаты концов отрезка[latex]AB[/latex] и [latex]CD[/latex].

Выходные данные

Пересекаются ли отрезки.

Тесты

Входные данные Выходные данные
[latex]x1[/latex] [latex]y1[/latex] [latex]x2[/latex] [latex]y2[/latex] [latex]x3[/latex] [latex]y3[/latex] [latex]x4[/latex] [latex]y4[/latex]
1 0 2 1 1 0 2 0 Отрезки пересекаются
-1 1 2 -2 0 -2 1 3 Отрезки пересекаются
1 1 2 2 2 2 1 1 Отрезки пересекаются
-1 1 -1 2 1 1 2 2 Отрезки не пересекаются
-2 -1 -2 3 0 -1 0 3 Отрезки не пересекаются
-2 0 0 2 0 -2 1 1 Отрезки не пересекаются

Код программы

Решение

Пусть концы отрезков имеют координаты [latex](x1,y1),[/latex] [latex](x2,y2),[/latex] [latex](x3,y3),[/latex] и [latex](x4,y4),[/latex]. По имеющимся точкам выведем параметрические уравнения обоих отрезков: [latex]0\leq u \leq 1:[/latex] $$\begin{cases}x=ux1+(1−u)x2; \newline y=uy1+(1−u)y2\end{cases};$$ и [latex] 0\leq v \leq 1:[/latex] $$\begin{cases}x=vx3+(1−v)x4 \newline y=vy3+(1−v)y4\end{cases}$$
В точке пересечения [latex]x[/latex] и [latex]y[/latex] должны совпадать. Значит выходит система двух линейных уравнений, которую нужно решить относительно [latex]u[/latex] и [latex]v:[/latex] $$\begin{cases}ux1+(1−u)x2=vx3+(1−v)x4 \newline uy1+(1−u)y2=vy3+(1−v)y4\end{cases}$$
Найдем определитель: [latex]denominator=(y4-y3)\cdot(x1-x2)-(x4-x3)\cdot(y1-y2).[/latex] Если он равен [latex]0[/latex], то прямые содержащие отрезки параллельны или совпадают. В этом случае проверим лежит ли вершина одного отрезка на другом, если она лежит, то отрезки пересекаются, иначе не пересекаются.
Если не [latex]0[/latex], то найдем решение по правилу Крамера:
$$\begin{cases}Ua=\frac{(x4-x2)\cdot(y4-y3)-(x4-x3)\cdot(y4-y2)}{denominator} \newline Ub=\frac{(x1−x2)\cdot(y4−y2)−(x4−x2)\cdot(y1−y2)}{denominator}\end{cases}$$
Если [latex]0\leq Ua \leq 1[/latex] и [latex]0\leq Ub \leq 1[/latex], то отрезки пресекаются, иначе отрезки не пересекаются.

Ссылки

Ideone

A60г

Алла Марокко
Алла Марокко

Latest posts by Алла Марокко (see all)

Задача:
Пусть [latex]D[/latex] — заштрихованная часть плоскости и пусть u определяется по [latex]x[/latex] и [latex]y[/latex] следующим образом: [latex] u=\begin{cases}x^{2}-1, ; \text{ if } (x,y)\in D \\\sqrt{\left| x-1 \right| } ; \text{ another case }\end{cases}[/latex] (запись [latex](x,y)\in D[/latex] означает, что точка с координатами [latex]x, y[/latex] принадлежит [latex]D[/latex]).

Даны действительные числа [latex]x[/latex] и [latex]y.[/latex] Определить [latex]u.[/latex]

a60%d0%b3
Тесты:

Вход Выход
[latex]x[/latex] [latex]y[/latex] [latex]u[/latex]
1 0.3 0.3 0.836660
2 1 1 0.000000
3 2 2 1.000000
4 0 0 -1.000000

Код:

Решение:
Для решения задачи проверим не принадлежит ли выбранная точка полуплоскости [latex] y<0 [/latex].Затем следует проверить не лежит ли выбранная точка вне полукруга, радиус которого равен 1 . Следующим действием нужно проверить не находиться ли точка в вырезанной четвертине маленького круга, радиус которого равен 0.3 .
Ссылка:
Онлайн компилятор ideone .

KM2. Радиус окружностей, удовлетворяющих условию

Задача

Дана сфера радиуса [latex]1[/latex]. На ней расположены равные окружности [latex]\gamma_0[/latex], [latex]\gamma_1[/latex], [latex]\ldots[/latex], [latex]\gamma_n[/latex] радиуса [latex]r \left(n \ge 3\right)[/latex]. Окружность [latex]\gamma_0[/latex] касается всех окружностей [latex]\gamma_1[/latex], [latex]\ldots[/latex], [latex]\gamma_n[/latex]; кроме того, касаются друг друга окружности [latex]\gamma_1[/latex] и [latex]\gamma_2[/latex]; [latex]\gamma_2[/latex] и [latex]\gamma_3[/latex]; [latex]\ldots[/latex]; [latex]\gamma_n[/latex] и [latex]\gamma_1[/latex].
При каких [latex]n[/latex] это возможно? Вычислить соответствующий радиус [latex]r[/latex].

Входные данные

Количество окружностей [latex]n[/latex].

Выходные данные

Радиус окружностей [latex]r[/latex].

Тесты

Входные данные ([latex]n[/latex]) Выходные данные ([latex]r[/latex])
3 0.816497
4 0.707107
5 0.525731
6 Solution does not exist.

Код программы

Решение задачи

Каждой окружности на сфере можно сопоставить её «центр на сфере» — конец радиуса сферы, проходящего через центр окружности (никогда не лежащий на сфере). Эту точку мы будем называть «центром» окружности в кавычках, подчёркивающих, что это не «обычный» центр (рис. 2, а).

Заметим для точности, что такого определённого «центра» нет у окружностей больших кругов сферы. Но окружности, о которых идёт речь в условии задачи, заведомо не могут иметь радиус [latex]1[/latex], потому что окружности двух больших кругов не могут друг друга касаться, — они всегда пересекают друг друга в двух диаметрально противоположных точках сферы.

Точка касания двух окружностей, расположенных на сфере (см. рис. 2, б), лежит в плоскости [latex]P[/latex], проходящей через центры окружностей и центр сферы. Действительно, обе окружности симметричны относительно плоскости [latex]P[/latex], и если бы они имели общую точку по одну сторону плоскости [latex]P[/latex], то должны были бы иметь и симметричную ей общую точку по другую сторону [latex]P[/latex], а у них всего одна общая точка. Если эти окружности имеют один и тот же радиус [latex]r[/latex], то расстояние между их «центрами» равно [latex]2r[/latex], потому что на окружности большого круга, получающейся в пересечении сферы и плоскости [latex]P[/latex] (рис. 2, в), диаметры наших окружностей (чёрные отрезки) и отрезок, соединяющий их «центры» (красный), стягивают равные дуги.

Пусть [latex]A_0[/latex], [latex]A_1[/latex], [latex]A_2[/latex], [latex]\ldots[/latex], [latex]A_n[/latex] — «центры» окружностей [latex]\gamma_0[/latex], [latex]\gamma_1[/latex], [latex]\ldots[/latex], [latex]\gamma_n[/latex], о которых идёт речь в условии задачи. Тогда [latex]A_0 A_1=A_0 A_2=\ldots=A_0 A_n=A_1 A_2=A_2 A_3=\ldots=A_n A_1=2r[/latex], другими словами, [latex]A_0 A_1 A_2 \ldots A_n[/latex] — правильная [latex]n[/latex]-угольная пирамида с вершиной [latex]A_0[/latex], у которой все боковые грани — равносторонние треугольники со сторонами равными [latex]2r[/latex]. Итак, достаточно построить пирамиду, для которой выполнены эти условия, тогда точки [latex]A_0[/latex], [latex]A_1[/latex], [latex]\ldots[/latex], [latex]A_n[/latex] будут определять окружности радиуса [latex]r[/latex], с «центрами» [latex]A_0[/latex], [latex]A_1[/latex], [latex]\ldots[/latex], [latex]A_n[/latex], которые, очевидно, удовлетворяют условию задачи.

Поскольку сумма плоских углов выпуклого [latex]n[/latex]-гранного угла с вершиной [latex]A_0[/latex] меньше [latex]360^\circ[/latex]:
[latex]n\cdot60^\circ=[/latex]∠[latex]A_1 A_0 A_2+[/latex]∠[latex]A_2 A_0 A_3+\ldots+[/latex]∠[latex]A_n A_0 A_1<360^\circ[/latex], то [latex]n<6[/latex]. Для [latex]n=3[/latex], [latex]4[/latex] и [latex]5[/latex] нетрудно построить нужные пирамиды.

Пусть [latex]O[/latex] — центр сферы. Высота пирамиды [latex]h[/latex] и длина её рёбер [latex]2r[/latex] находятся из следующих соображений: радиус [latex]K A_1[/latex] основания пирамиды — катет [latex]\bigtriangleup A_0 K A_1[/latex] и боковая сторона [latex]\bigtriangleup A_1 K A_2[/latex], где ∠[latex]A_1 K A_2=2 \pi / n[/latex] (рис. 3, а , б),
[latex]\sqrt{4 r^2-h^2 \sin \frac{\pi}{n}}=r[/latex]

Из [latex]\bigtriangleup A_0 O A_1[/latex] имеем [latex]r=\frac{h}{2r}[/latex].

Отсюда [latex]h=2 r^2[/latex], [latex]r=\sqrt{1-\frac{1}{4 \sin^2 \frac{\pi}{n}}}[/latex]

Таким образом,
при [latex]n=3[/latex]: [latex]r=\sqrt{\frac{2}{3}}[/latex] [latex]\left( \sin \frac{\pi}{3}=\frac{\sqrt{3}}{2} \right)[/latex]
при [latex]n=4[/latex]: [latex]r=\sqrt{\frac{1}{2}}[/latex] [latex]\left( \sin \frac{\pi}{4}=\frac{\sqrt{2}}{2} \right)[/latex]
при [latex]n=5[/latex]: [latex]r=\sqrt{\frac{1-\sqrt{5}}{2}}[/latex]
(формулу [latex]\sin \frac{\pi}{5}=\frac{\sqrt{10-2 \sqrt{5}}}{4}[/latex] можно вывести из рисунка 4, с помощью которого строятся правильный десятиугольник и правильный пятиугольник).

Рисунки, использованные в решении

Рисунок 2:

Рисунок 3:

Рисунок 4:

Научно-популярный журнал «Квант», 1970 год, №7, страницы 51-53

Итоги:
Выведенная во время решения формула [latex]r=\sqrt{1-\frac{1}{4 \sin^2 \frac{\pi}{n}}}[/latex] справедлива только при [latex]n=3[/latex], [latex]4[/latex], [latex]5[/latex]. В случае, если задать значения больше этих, то выражение под корнем примет отрицательное значение, а в рамках данной задачи это будет говорить об отсутствии решения. Значения же меньше будут недопустимы, что было указано в условии.
Таким образом, программа выведет сообщение об отсутствии решения, если заданные значения [latex]n[/latex] отличны от вышеупомянутых. Если же условия будут соблюдаться, то задача выведет соответствующее значение радиуса.

Ссылки