Черная пятница

Разбор задачи с 1/8 ACM ICPC по украинскому региону 25 марта 2017.

Задача. Завтра черная пятница — самая большая новогодняя распродажа. Степан, как владелец магазина, принял решение, что цены всех товаров будет снижено на 25%. Он выяснил, что начальные цены на все товары делились на 4, поэтому после снижения цен все цены тоже выражаются целым числом. Степан вечером перед распродажей снял ценники с всех товаров и напечатал для каждого товара еще один ценник со скидкой. Он оставил их на столе, рассчитывая утром их развесить. Но, когда он пришел утром в магазин, то выяснилось, что уборщица смешала все ценники вместе, и теперь Степану нужно отделить старые ценники от новых.
Помогите ему.
Входные данные:
Первый ряд входного файла содержит одно число N (2 ≤ N ≤ 105), N — четное. Следующие N рядов содержат положительные числа не больше чем 109, которые идут в порядке возрастания по одному в ряду — числа со всех ценников (как старых так и новых). Гарантируется, что входные данные корректны, то есть решение существует.
Выходные данные:
Вывести N/2 целых числе в порядке возрастания — стоимость товаров после снижения цен.

Тесты

входные данные результат работы
6 30
30 40
40 45
42
45
56
60

Код задачи

Решение задачи
Так как нам изначально известно, общее количество ценников, то вводим их все в массив, где как нам уже сказано по условию, они будут располагаться в порядке возрастания. Значит, уже с первого элемента мы получим новую цену так как она будет точно меньше любой наименьшей до скидки. Находим старую цену соответствующую ей и обнуляем ее (это делается для оптимизации времени работы кода, чтоб потом мы не искали старую цену от этого элемента). Так же, после первого нахождения старой цены мы начинаем поиск остальных с этого же места, потому что меньше они точно не могут быть и наш алгоритм должен продвигаться только вперед.
Таким образом, мы проходим через все цены, выписываем все новые цены, а старые «выбрасываем» из-за ненужности.
Ссылка на код задачи

Related Images:

А290

Задача. Даны действительные числа [latex]x_{1},\ldots,x_{n}[/latex], [latex]y_{1},\ldots,y_{n}[/latex]. Получить [latex]x’_{1},\ldots,x’_{n}[/latex],[latex]y’_{1},\ldots,y’_{n}[/latex], преобразовав для получения [latex]x’_{i},y’_{i}[/latex] члены [latex]x_{i},y_{i}[/latex] по правилу: если они оба отрицательны, то каждый из них увеличить на 0.5; если отрицательно только одно число, то отрицательное число заменить его квадратом; если оба числа неотрицательны, то каждое из них заменить на среднее арифметическое исходных значений.

Тесты

n [latex]x_{1},\ldots,x_{n}[/latex] [latex]y_{1},\ldots,y_{n}[/latex] [latex]x’_{1},\ldots,x’_{n}[/latex][latex]y’_{1},\ldots,y’_{n}[/latex] Комментарий
4 1 4 -3 8

3 -2 -4 2

2 4 -2.5 5

2 4 -3.5 5

Пройдено
5 0 -0.5 4 -9 0.35

0 -0.5 11 0.247 1.650

0 0 7.5 81 1

0 0 7.5 0.247 1

Пройдено
3 0 3 -0.14942

-3 0 793

0 1.5 0.0223263

9 1.5 793

Пройдено

Реализация (массив структур)

Алгоритм решения (массив структур)
Для выполнения данной задачи, воспользуемся массивом структур. Каждый [latex]i[/latex]-ый элемент такого массива заполняем двумя действительными числами [latex]x_{i}[/latex] и [latex]y_{i}[/latex]. После этого мы выполняем проверку и преобразование этих чисел по заданным в условии правилам. Затем их выводим.

Реализация (класс vector)

Алгоритм решения (класс vector)
Данный способ реализации помогает решить задачу преобразования чисел [latex]x_{1},\ldots,x_{n}[/latex], [latex]y_{1},\ldots, y_{n}[/latex] для неизвестного значения [latex]n[/latex] — количества элементов [latex]x_{i}[/latex] и [latex]y_{i}[/latex]. Их количество будет зависить от количества введенных элементов. Программа считывает элементы [latex]x_{i}[/latex] и [latex]y_{i}[/latex] поочередно, т.е. [latex]x_{1}\rightarrow y_{1}\rightarrow x_{2} \rightarrow y_{2} \rightarrow\ldots\rightarrow x_{n}\rightarrow y_{n}[/latex]. В остальном алгоритм такой же как с массивом структур.

Ссылка на код (массив структур)
Ссылка на код (класс vector)

Related Images:

AL1

Условие задачи

Вводится последовательность, состоящая из [latex]N[/latex] пар символов [latex](a_i, b_i)[/latex]. Каждая пара определяет порядок предшествования символов, например, пара [latex](b, c)[/latex] означает, что символ [latex]b[/latex] предшествует символу [latex]c[/latex]. Из порядка [latex](b, c)[/latex] и [latex](c, a)[/latex] следует порядок [latex](b, a)[/latex]. Необходимо определить, является ли введенная последовательность:

а) полной, т.е. все использованные для формирования пар символы (выбросив повторяющиеся) можно выстроить в цепочку [latex]A_{1},A_{2}, \cdots ,A_{s}[/latex] в порядке предшествования;

б) противоречивой, т.е. для некоторых символов [latex]x,y[/latex] можно получить одновременно порядок как [latex](x, y)[/latex] так и [latex](y, x)[/latex];

Тесты

Входные данные Результат
4
a b
b c
c d
b d
полный порядок
3
2 a
8 c
c b
порядок неполный
3
2 a
8 c
a 8
полный порядок
4
2 a
8 c
c 2
a c
Порядок противоречив
10
a 5
5 4
b 3
3 4
5 3
b 5
a b
4 *
* 0
4 0
полный порядок

Код программы

Решение

Общая идея решения

Эта часть решения взята отсюда

Пусть при записи этих [latex]N[/latex] пар встретилось всего [latex]K[/latex] различных символов, которые образуют множество [latex]X[/latex].

Идея решения задачи состоит в последовательном присвоении каждому символу [latex]s[/latex] из [latex]X[/latex] номера, который определяет количество [latex]P(s)[/latex] элементов, предшествующих ему, с учетом свойства транзитивности (из [latex](c, b)[/latex] и [latex](b, a)[/latex] следует [latex](c, a)[/latex]). Это осуществляется следующим образом:

Первоначально предполагается, что каждому символу не предшествует ни один символ, т.е. [latex]P(s)=0[/latex] для любого [latex]s[/latex].

При просмотре очередной пары [latex](x, y)[/latex] символу y присваивается большее из значений [latex]P(x)+1, P(y)[/latex].

Очевидно, что при первом просмотре всех пар из входной последовательности определятся все упорядоченные цепочки длины 2, т.е. состоящие из 2 элементов. Поэтому номера некоторых элементов будут как минимум 1. При каждом из следующих просмотров входной строки возможно несколько вариантов.

  1. Не произошло изменения ни одного из номеров символов. Если при этом номера символов различны и лежат в пределах от 0 до [latex]K-1[/latex], то эта нумерация определяет полный порядок. Иначе порядок неполный.
  2. Номер некоторого символа превысил [latex]K-1[/latex]. Это произошло потому, что рост номеров неограничен, т.е. осуществляется циклически. Следовательно порядок противоречив.

Легко понять, что число просмотров не превысит [latex]N[/latex].

Некоторые аспекты реализации

Нам необходимо будет несколько раз просматривать все пары, поэтому их не получится обрабатывать поточно. Будем хранить их в отдельном двумерном массиве.

Воспользуемся тем фактом, что символы воспринимаются компьютером, как числа. Заведем для номеров символов в последовательности массив chars на 256 элементов, поскольку тип данных char может принимать значения от 0 до 255. Это позволит обращаться к элементу массива, соответствующий какому-то символу напрямую, а не используя ассоциативный массив.  Это дает выигрыш в скорости, хотя и с некоторым увеличением расхода памяти.

Изначально каждый элемент массива chars пусть будет равен -1. Затем, пройдя все пары, присвоим каждому символу номер 0 в этом массиве. Таким образом, мы в дальнейшем сможем определить, что символ входит в нашу последовательность, поскольку его номер неотрицательный.

Если при очередном просмотре входной строки не произошло изменений, отсортируем массив номеров и проверим каждый ли предыдущий неотрицательный меньше следующего на 1.

ссылка на код на ideone

ссылка на условие задачи

Related Images:

e-olimp 1310. Наибольший блок

Задача

Блоком строки [latex]S[/latex] в позиции [latex]i[/latex] назовём наибольшую подстроку [latex]S[/latex], которая начинается в позиции [latex]i[/latex] и совпадает с префиксом [latex]S[/latex]. Длину блока в позиции 0 считать равной нулю. Вычислить длину наибольшего блока заданной строки [latex]S[/latex].

Входные данные

Единственная строка [latex]S[/latex] [latex]\left(\left|S\right|\leq{10}^{6}\right)[/latex].

Выходные данные

Длина наибольшего блока строки [latex]S[/latex].

Тесты 

 Входные данные  Выходные данные
abaabaab  5
aaaaa 4
aaabaab 2

Реализация 

Код на ideone.com

Засчитанное решение на e-olimp.com

Решение

Для решения данной задачи необходимо рассмотреть алгоритм эффективного вычисления [latex]Z[/latex]-функции. Создадим массив [latex]z[/latex], где [latex]i[/latex]-ый элемент  равен наибольшему числу символов, начиная с [latex]i[/latex]-ой позиции,  совпадающих с первыми символами заданной строки [latex]s[/latex]. Эффективность алгоритма состоит в том, что при вычислении очередного элемента массива [latex]z[/latex] мы будем использовать уже вычисленные ранее значения. Назовем отрезком совпадения подстроку, совпадающую с префиксом заданной строки. Тогда искомое значение [latex]z\left [ i \right ][/latex] — это длина самого длинного отрезка совпадения, начинающегося в позиции [latex]i[/latex]. Из всех найденных отрезков совпадения будем хранить тот, который оканчивается правее всего. Положим, что [latex]l[/latex] и [latex]r[/latex] — индексы начала и конца данного отрезка соответственно. Тогда при вычислении [latex]z\left [ i \right ][/latex] возможны две ситуации: [latex]i>r[/latex] и [latex]i\leq r[/latex]. В первом случае позиция  [latex]i[/latex] лежит за пределами проанализированной части строки . Тогда ищем значение [latex]Z[/latex]-функции перебором до тех пор, пока не дойдем до несовпадения или конца заданной строки. Стоит отметить, что если [latex]z\left [ i \right ]>0[/latex], следует изменить индексы отрезка совпадений. Во втором случае текущая позиция [latex]i[/latex] лежит внутри отрезка совпадений [latex]\left [ l,r \right ][/latex]. Так как подстроки [latex]s\left [ l\ldots r \right ][/latex] и [latex]s\left [ 0\ldots r-l \right ][/latex] совпадают, то в качестве значения [latex]z\left [ i \right ][/latex] можно взять значение [latex]z\left [ i-l \right ][/latex]. Однако, значение [latex]z\left [ i-l \right ][/latex] может быть слишком большим для данного блока (суффикс строки будет меньше, чем данное значение, чего быть не может). Следовательно, [latex]z\left [ i \right ][/latex]-ому элементу будем присваивать значение минимума из длины суффикса [latex]\left ( r-i+1 \right )[/latex] и [latex]z\left [ i-l \right ][/latex]. Далее используем вышеописанный перебор. В конечном итоге максимальный элемент массива — длина наибольшего блока заданной строки.

Related Images:

e-olymp 6. Путёвки

Постановка задачи

e-olymp 6. Путёвки

Туристическая фирма не успела из-за больших морозов продать [latex]n[/latex] ([latex]n < 15[/latex]) путёвок на горнолыжные базы, срок действия которых уже наступил. С целью уменьшения убытков, было решено с 1 февраля все такие путёвки, которым осталось [latex]d_k[/latex] ([latex]d_k \le 30[/latex]) дней, продавать по номинальной стоимости – по [latex]c_k[/latex] ([latex]c_k \le 100[/latex]) грн за день только за те дни, что остались со дня продажи ([latex]k = 1..n[/latex]).

На какую наибольшую сумму можно реализовать эти путёвки, если каждый день продавать по одной путёвке?

Входные данные

Первая строка содержит количество путёвок [latex]n[/latex]. Каждая из следующих [latex]n[/latex] строк содержит два числа – количество дней [latex]d_k[/latex] и стоимость дня [latex]c_k[/latex].

Выходные данные

Максимальная сумма прибыли.

Алгоритм решения

Решим эту задачу полным перебором (методом грубой силы). Для этого необходимо перебрать все возможные варианты реализации. К примеру, дано три путевки:

Первая путёвка

  • срок действия: 2
  • номинальная стоимость: 13

Вторая путёвка

  • срок действия: 1
  • номинальная стоимость: 33

Третья путёвка

  • срок действия: 3
  • номинальная стоимость: 7

Надо перебрать все возможные варианты и для каждого подсчитать сумму за реализованные путевки.

Путевки Перебор всех возможных вариантов
Вариант 1 Вариант 2
Очередность Результат Очередность Результат
Первая 1 20 1 20
Вторая 2 3
Третья 3 2
Вариант 3 Вариант 4
Очередность Результат Очередность Результат
Первая 2 53 2 20
Вторая 1 3
Третья 3 1
Вариант 5 Вариант 6
 Очередность Результат Очередность Результат
Первая 3 40 3 7
Вторая 1 2
Третья 2 1

Теперь очевидно, что максимальная сумма прибыли равна 53. Таким образом можно решить данную задачу при любых входных данных. Но возникает проблема, когда путевок слишком много (или даже не очень). Количество перестановок для [latex]n[/latex] элементов равно [latex]n![/latex]. Это значит, что при количестве путевок, равном [latex]14[/latex] (максимальное возможное количество в данной задаче), количество перестановок равно [latex]14! = 87178291200[/latex], а ведь для каждой необходимо подсчитать сумму за реализованые путевки. Современные компьютеры не могут справиться с этой задачей за короткий промежуток времени, поэтому явным решением является оптимизация программы.

Давайте представим, что мы имеем две путевки, сроки действия которых равны единице. Очевидно, что одну из них мы точно не успеем реализовать, так как продав одну, срок действия другой на следующий день истечет, а, так как реализовать путевки необходимо за наибольшую сумму, то реализовать нужно ту, чья номинальная стоимость выше. Отсюда следует, что, когда есть две путевки, сроки действия которых равны единице, более дешевую можно игнорировать. Теперь, пусть у нас есть три путевки, сроки действия которых равны двум. Аналогично рассуждая, можно прийти к выводу, что в такой ситуации путевку с самой низкой номинальной стоимостью можно игнорировать. Это же верно для четырех, пяти и т.д. путевок. Тогда нам остается перед началом полного перебора отсечь путевки, не влияющие на ответ, при этом сократив время выполнения в разы.

Тесты

Входные данные Выходные данные
4
2 37
3 45
1 46
4 30
232
3
1 1
2 2
3 3
11
4
1 2
3 4
5 6
7 8
84

Реализация

ideone: ссылка
Засчитаное решение: ссылка

Related Images:

e-olymp 138. Банкомат

Задача. В банкомате имеются в достаточном количестве купюры номиналом [latex]10, 20, 50, 100, 200[/latex] и [latex]500[/latex] гривен. Найти минимальное количество купюр, которое необходимо использовать, чтобы выдать сумму в [latex]n[/latex] гривен[latex](0 \leq n \leq 1000001)[/latex], или вывести [latex]-1[/latex], если указанную сумму выдать нельзя.

Тесты

Сумма 130 999 7360 3 80 123450 567 440
Число купюр 3 -1 18 -1 3 249 -1 4

 

Код программы:

Алгоритм

В данной задаче очень удобно применить так называемый жадный алгоритм. Он заключается в том, чтобы взять купюру наибольшего достоинства, и найти, сколько раз она входит в данную сумму. То, что мы можем выдать только с помощью этой купюры,  отнять от исходной суммы. Затем повторить операцию для оставшегося количества денег и самой большой из купюр меньшего достоинства. Перебрав таким образом все купюры, мы получим наименьшее их количество для получения данной суммы, что от нас, собственно, и требуется.

Такой алгоритм подходит не для всех валютных систем, а только для канонических — таких, в которых каждая купюра большего достоинства превышает меньшую более чем в два раза. В нашем случае это условие соблюдается.

Следует учесть, что сумма может быть и такой, что банкомат не сможет ее выдать. Это будет происходить тогда, когда сумма содержит некоторую часть, меньшую самой меньшей купюры. Чтобы выяснить, так ли это, мы смотрим, что осталось от суммы после применения жадного»алгоритма. Если остаток равен [latex]0[/latex], то исходную сумму можно получить с помощью имеющихся купюр, и на экран выводится результат, полученный в цикле. Если же остаток больше [latex]0[/latex], такую операцию осуществить невозможно и программа выводит  [latex]-1[/latex].

 

Решение

Код программы

Related Images:

Ю4.12

Задача: Все ненулевые элементы матрицы [latex]D(k,l)[/latex] расположить в начале массива [latex]E(k \times l)[/latex] и подсчитать их количество.

K L Матрица D Ненулевые элементы матрицы E Количество ненулевых элементов
2 3 2 7 0
1 4 9
 2 7 1 4 9  5
3 4 6 7 4 2
9 0 1 3
0 8 0 19
 6 7 4 2 9 1 3 8 19  9
4 2  8 9
0 1
5 2
7 26
 8 9 1 5 2 7 26 8

Заполняем матрицу с клавиатуры посредством циклов.
Выводим ненулевые элементы.
Выводим их количество.
Выводим матрицу D.

Ссылка на код

Related Images:

А404

Задача:

Даны натуральные числа [latex]{i}, {j}[/latex], действительная матрица размера [latex]{18}\times{24}[/latex]  [latex](1\leq i\leq j\leq 24)[/latex]. Поменять местами в матрице [latex]{i}[/latex]-й и [latex]{j}[/latex]-й столбцы.

Тест:

Вводим матрицу (размером [latex]{18}[/latex] — строк, [latex]{24}[/latex] — столбцов) в [latex]{input}[/latex], в следующей строке вписываем номера столбцов которые хотим поменять.

Пример:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
3 6

Программа:

  1. Ввод самого массива;
  2. Перевод строки после каждого 24 элемента;
  3. Ограничение по вводу до 18 строк;
  4. Замена местами обозначенных столбцов.
    Ссылка на программу
    P.S Хотел в тесте ввести матрицу красиво но [latex]{latex}[/latex] не воспринимал пробелы, пришлось бы вводить каждый элемент отдельно или же можно как то иначе.

Related Images:

Ю4.8

Задача:

В массиве C(m) заменить каждый третий элемент полусуммой двух предыдущих, а стоящий перед ним — полусуммой соседних с ним элементов.

Тест:

Количество элементов Элементы Результат
3 5 9 1  5  3  7
6 8 7 6 9 4 0  8  7  7,5  9  4,5  6,5
9 2 5 7 3 6 9 4 6  2  4,5  3,5  3  6  4,5  4  5,5 5

Программа:

  1. Задаем массив;
  2. Выбираем числа кратные трем;
  3. Меняем каждый третий элемент начиная со второго;
  4. Находим полусумму двух предыдущих элементов;
  5. Берем число стоящее перед числом кратным трем;
  6. Заменяем его на полусумму стоящих рядом элементов.
    Ссылка на программу

Related Images:

А409

Дана действительная квадратная матрица порядка 9. Вычислить сумму тех из её элементов, расположенных на главной диагонали и выше неё, которые превосходят по величине все элементы, расположенные ниже главной диагонали. Если на главной диагонали и выше неё нету элементов с указанным свойством, то ответом должно служить сообщение об этом.

1 3 1 1 1 1 1 1 2
1 1 1 1 1 1 1 1 1
1 1 1 1 1 4 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 5
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
Ответ 14
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 2 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
Ответ Нету элементов с такими свойствами

Находим наибольший из нижних элементов (элементы, расположенные ниже главной диагонали). Потом сравниваем каждый элемент верхнего множества (элементы, расположенные выше главной диагонали и на самой диагонали) с наибольшим элементов ([latex]bigger[/latex]) всех нижних элементов и если это число больше, то прибавляем это число к переменной [latex]summa[/latex].

link

Java

 

Related Images:

А410е

Дана целочисленная матрица [latex][a_{ij}], ij=1,\ldots,n.[/latex] Получить [latex]b_{1},\ldots,b_{n}[/latex], где [latex]b_{i}[/latex] — это: [latex]\underset{1\leq j\leq n}{\max a_{ij}}\cdot \underset{1\leq j\leq n}{\min a_{ji}}[/latex].

Исходя из задачи ясно, что из данной матрицы надо взять максимальный элемент [latex]i[/latex]-й строки и умножить его на минимальный элемент [latex]i[/latex]-го столбца. Так например, если нам дана матрица 2-го порядка [latex]\begin{Vmatrix}1&2\\4&1\end{Vmatrix}[/latex] то [latex]b_{1}= 2[/latex], [latex]b_{2}= 4[/latex].

Для нахождения максимума  [latex]a_{ij}[/latex], введем переменную и будем придавать ей начальное значение 1-го элемента [latex]i[/latex]-й строки. Дабы при расчете максимума проходя по элементам строки мы не сравнивали каждый [latex]i[/latex]-й элемент с 1-м, придавать начальное значение максимуму мы будем в цикле по [latex]i[/latex]. Аналогично с минимумом [latex]a_{ji}[/latex], одно единственное но, начальное значение минимума будет равно первому элементу [latex]i[/latex]-го столбца.

 Тесты:

Матрица порядка [latex]n[/latex], где [latex]n[/latex]: [latex]a[i][j][/latex]: Результат: Комментарий:
2 [latex]\begin{Vmatrix}1&2\\4&1\end{Vmatrix}[/latex] 2 4 Пройден.
3 [latex]\begin{Vmatrix}1&2&3\\4&1&-6\\1&-2&-1\end{Vmatrix}[/latex] 3 -8 -6 Пройден.

 

Ссылка на код.

Related Images:

Ю4.15

Заданы массивы [latex]A(n)[/latex] и [latex]B(m)[/latex]. Получить массив [latex]C(m+n)[/latex], расположив в начале его элементы массива [latex]A[/latex], а затем элементы массива [latex]B[/latex].

Из выше написанного ясно что нам нужно сделать. Все пояснения максимально детально расписаны в самом коде.

Тесты:

n m A[n] B[m] Результат:
3 4 0 1 2 5 7 8 4 A={0 1 2}
B={5 7 8 4}
C={0 1 2 5 7 8 4}
2 9 9 3.6 7.4 3.6 4.6666 7.99702 1 1 1 1 1 A={9 3.6}
B={7.4 3.6 4.6666 7.99702 1 1 1 1 1}
C={9 3.6 7.4 3.6 4.6666 7.99702 1 1 1 1 1}
 

Ссылка на код.

Related Images:

Ю4.21

Задача.

Целочисленный массив K(n, n) заполнить нулями и единицами, расположив их в шахматном порядке.

Тесты.

Ввод Вывод
1 1
3
6

 

 

 

Решение.

В цикле проверяем если сумма номеров элемента в массиве чётна, то печатаем единицу, в противном случае печатаем ноль.

Related Images:

А410в

Дана целочисленная матрица[latex][a_{ij}]_{i,j=1,…,n}[/latex] . Получить [latex]b_{1},…,b_{n}[/latex], где [latex]b_{i}[/latex] — это [latex]\prod_{j=1}^{n}a_{ij}[/latex];

Матрица Результат
4
1 4 6 -5 -120
5 7 8 7 1960
1 2 5 9 90
5 5 0 3 0

 

Для начала прочитаем матрицу из потока ввода используя цикл for. Потом создадим цикл, в котором сначала будем присваивать каждому [latex]b_{i}[/latex] значение 1, а после этого получать необходимое значение. В самом конце напечатаем результат используя цикл.

Related Images:

Ю4.9

Задача: В матрице [latex]A\left(m,n \right)[/latex] все ненулевые элементы заменить обратными по величине  и противоположными по знаку.

Тесты:

n m Введенная матрица Полученная матрица
3 4 2 0 3 6
1 0 1 2
9 0 7 8
-0.5 0 -0.333333 -0.166667
-1 0 -1 -0.5
-0.111111 0 -0.142857 -0.125
3 4 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
3 5 -2 0 -4 5 -6
9 -8 7 -6 5
-7 3 -6 0 -9
0.5 0 0.25 -0.2 0.166667
-0.111111 0.125 -0.142857 0.166667 -0.2
0.142857 -0.333333 0.166667 0 0.111111
3 4 1 1 1 1
1 1 1 1
1 1 1 1
-1 -1 -1 -1
-1 -1 -1 -1
-1 -1 -1 -1
Ссылка на код: http://ideone.com/JX6G1b
Ссылка на код:ссылка

Ход решения:

Вводим матрицу [latex]A[/latex] размером [latex]\left(m,n \right)[/latex]. Делаем цикл, в котором проверяем каждый элемент матрицы. Если он равен [latex]0[/latex] — мы оставляем его без изменений, если не равен [latex]0[/latex], то  умножаем его на обратный по величине и противоположный по знаку [latex]\left(-\frac{1}{A\left[i \right]\left[j \right]} \right)[/latex]. Полученную матрицу выводим на печать.

Related Images:

Ю4.3

Задача:

Центрирование массива. От каждого из заданных чисел x1, x2,…, xn отнять их среднее арифметическое.

xср= 1/m

E от m при i=1 (x1); xi= xi-xср; i=1,2,…, m

Результаты разместить на месте исходных данных.

Тесты:

Введите M (количество элементов в массиве) Введите первое число Введите следующее число Результат Вывод
2 2 5 -1

2

Тест пройден
2 1 2 0

1

Тест пройден
2 0 2 -1

1

Тест пройден
2 0 3 -1

2

Тест пройден
2 0 1 0

1

Тест пройден

Код:

 

Решение:

объявляем массив m;

int i; // счетчик цикла

int arr[100]; //массив не более 100 элементов

int sum = 0; // сумма чисел массива

cout << «Введите первое число: »

Циклы и условия:

for (i = 2; i <= m; i++) // цикл

for (int i = 1; i <=m; ++i)

cout << arr[i] — (sum / m) << » «;

Код в ideone: http://ideone.com/vB6l0Y

Related Images:

А99

Задача: Пусть [latex]a_{1}=4[/latex], b1=v, an=2bk-1+ak-1. bk=2a^2k-1+bk-1, k=2,3…

Даны действительные u, v, натуральное n.

Найти Е от n при k=1 (ak*bk)/(k+1)!

Тесты:

N U V Результат Вывод
2 4 3 64 тест пройден
1 4 2 4 тест пройден
2 1 2 4 тест пройден
0 3 1 1 тест пройден
1 2 3 3 тест пройден

Код:

Решение:
if (M == 0) // массив
return 1; // возвращаем факториал от нуля, это 1
else // Во всех остальных случаях
return M * fact(M — 1); // делаем рекурсию.

Пишем условия и формулы:

sum = a * b / fact(k + 1);
for (k = 2; k <= n; k++) // цикл

Цикл:
t = a;
a = 2*b + a;
b = 2 * t * t + b;
sum = sum + (a * b / fact(k + 1));

код задачи в ideone: http://ideone.com/1fNmWc

Related Images:

Ю4.16

Задача.

Все четные элементы целочисленного массива [latex]K(n)[/latex] поместить в массив [latex]L(n)[/latex], а нечетные — в массив [latex]M(n)[/latex]. Подсчитать количество тех и других.

Тесты.

n K[ ] num of L L[ ] num of M M[ ] Комментарий
6 1 2 3 4 5 6 3 2 4 6 3 1 3 5 Пройден
5 1 1 6 4 3 2 6 4 3 1 1 3 Пройден

Решение.

C++

Java

В цикле проверяем каждый элемент массива [latex]K(n)[/latex], если элемент четный, то добавляем его в массив [latex]L(n)[/latex], если нет, то добавляем его в массив [latex]M(n)[/latex]. При этом после каждого добавления увеличиваем соответствующий счетчик на 1.

Для выполнения программы и проверки тестов можно воспользоваться следующей ссылкой(C++) или другой(Java).

 

 

Related Images:

Ю 4.37

Задача

Автостоп-2. Из пункта А в пункт В, между которыми [latex]s[/latex] км, выехал велосипедист с постоянной скоростью [latex]v_{0}[/latex] км/ч. Навстречу ему — из пункта В — другой путешественник решил добраться «автостопом» — на разных видах попутного транспорта. Перед каждым участком он [latex]\tau _{i}[/latex] минут «голосует», ожидая попутного транспорта, затем движется [latex]t _{i}[/latex]  часов со скоростью [latex]v _{i}[/latex] км/час ( величины [latex]\tau _{i}, t _{i}, v _{i}, i=1,2,\ldots,n[/latex]  заданы в соответствующих массивах). Через какое время после старта и на каком расстоянии от пункта А путники встретятся?

Тесты

s [latex]v_{0}[/latex] n [latex]\tau _{i}[/latex] [latex]t _{i}[/latex] [latex]v _{i}[/latex] place, км  time, ч Комментарий
100.0 30.0  1 60.0 1.0 40.0 60.0 2.0 Пройден
100.0 10.0 1 0.0 1.0 40.0 Путники не доехали до места встречи Не пройден
130.0 15.0 2 0.0 3.0 1.0 2.6 40.0 33.3 2.587267 38.809006 Пройден

 

Код программы

Вначале программы вводим во входной поток и считываем данные. Далее, в цикле, проверяем несколько условий, таких как:

  1. Пока второй ждал — первый уже проехал весь путь.
  2. Если после i-ого этапа (т.е. после ожидания транспортного средства, поездки на нем) сумма пройденного пути второго и первого путника больше, чем весь путь.

Далее высчитываем само место и время встречи.
В конце программы, за циклом, проверяем каков общий пройденный путь двух путников и если он меньше всего пути, то выводим сообщение, что они так и не встретились.

Код на Java

 

Related Images:

Ю4.14

Задача:

Элементы заданного массива [latex]T(k)[/latex] расположить в обратном порядке : [latex] t_k, t_{k-1}, … , t_2, t_1.[/latex]

Тесты:

 

[latex]k[/latex] Вводимые значения Результат Комментарий
6 1 2 3 4 5 6 6 5 4 3 2 1 Пройдено
1 3 3 Пройдено
3 22 501 -1254 -1254 501 22 Пройдено

Код:

В начале  задаем количество  элементов в массиве. Заполняем массив значениями с помощью цикла [latex]for[/latex].  С помощью цикла [latex]for[/latex] выводим элементы массива  в обратном порядке.

Ссылка Ideone.

Код Java

Ссылка на Ideone

Related Images: