e-olimp 8536. Заповнення смуги $3 \times n$

Задача

Смугу висотою $3$ см і шириною $n$ см суцільно заповнено прямокутниками $3 \times 1$ та $1 \times 3$ см. Скількома способами можна її заповнити? Різні способи – це різні кількості вказаних прямокутників та їх різні розташування.

Вхідні дані

Одне натуральне число $n$ $(1 \leqslant n \leqslant 50)$.

Вихідні дані

Вивести кількість способів, якими можна заповнити смугу.

Тести

Вхідні дані Вихідні дані
1 1
5 4
12 60
50 122106097

Код № 1

Рішення 1

Це завдання на динамічне програмування, тому спочатку нам потрібно розбити цю задачу на декілька простих. Треба порахувати кількість способів для чотирьох перших елементів масиву. Якщо рахувати далі, то ми помітимо, що кожне наступне значення отримується за формулою F[i] = F[i-2] + F[i-3] + F[i-4].

Код № 2

Рішення 2

Також для рішення цієї задачі можна використати рекурсію. При виклику функції ми перевіряємо, чи є в пам’яті це значення. Якщо такого значення не має, то ми його рахуємо. Таким чином ми уникаємо використання зайвої пам’яті.

Посилання

Умова задачі на E-Olymp
Зараховане рішення № 1 на E-Olymp
Зараховане рішення № 2 на E-Olymp
Код задачі № 1 на Ideone
Код задачі № 2 на Ideone

e-olymp 1704. Умная черепашка

Условие задачи

Имеется клетчатое поле размером $m\times n$. В левом нижнем углу сидит черепашка. Она умеет ходить только вправо или вверх. Перед тем как добраться до правого верхнего угла её заинтересовал вопрос: сколько существует способов добраться из исходной точки до правого верхнего угла?

Черепашка хотя и умная, но сама считать так много пока не умеет. Помогите черепашке найти ответ на свой вопрос.

Входные данные

Два натуральных числа $m$ и $n$, не превышающие 30.

Выходные данные

Вывести количество способов, которыми черепашка сможет добраться из левого нижнего угла в правый верхний.

Тесты

Ввод Вывод
1 4 5 10
2 3 14 105
3 11 17 5311735
4 20 21 68923264410
5 30 30 30067266499541040

Код программы (циклы)

Решение

Для нахождения количества способов, которыми черепашка сможет добраться из левого нижнего угла в правый верхний, мы воспользуемся формулой из комбинаторики: $\frac{\left(n+m-2\right)!}{(n-1)!\times(m-1)!}$.  Для того, чтобы избежать больших чисел,  делим на наибольший множитель знаменателя (пусть это будет $\left(n-1\right)!$ ). Получаем: $ \frac{n\times(n+1)\times…\times(n+m-2)}{1\times2\times…\times(m-1)}$. Домножаем числитель, пока он не делится на очередной сомножитель знаменателя. Если делится, то делим и переходим к следующему сомножителю знаменателя.

 

Код программы (динамическое программирование)

Решение

Заполним треугольную матрицу ответами для всех возможных значений $m$ и $n$ . Логика заполнения такая — если поле выглядит как полоска клеток, черепахе идти можно будет только вправо. Значит в первой строке (как и в столбце) будут все элементы равные 1. Поскольку в каждой клетке есть два варианта движения (вправо или вверх), остальные элементы будут заполняться как сумма ранее найденных значений для клеток справа текущей и над ней. Для диагональных элементов оба соседних расположены симметрично (то есть они равны), поэтому диагональный элемент будет равен удвоенному соседу справа. Решение намного быстрее, если нужно пройти много тестов, но тратит память на запоминание всех ответов.

Ссылки (циклы)

Ссылки (динамическое программирование)

e-olymp 1290. Номерной знак

Задача

Международный номерной регистрационный знак легкового автомобиля состоит из $A$ арабских цифр и $B$ больших букв латинского алфавита. Будем считать, что для обеспечения уникальности номера разрешено использовать любую последовательность букв и цифр.

Сколько существует различных таких номеров?

Входные данные

В единственной строке через пробел $2$ неотрицательных целых числа $B$ и $A$. Оба числа не превышают $26$.

Выходные данные

Единственное число — ответ к задаче.

Тесты

Входные данные Выходные данные
1 3 3 17576000
2 2 5 67600000
3 7 1 80318101760
4 1 1 260
5 26 26 615611958020715731079667428840020377600000000000000000000000000

Код

Решение

Начнем с того, что к условию задачи прилагается картинка, на которой видно, что во всех номерных знаках буквы и цифры не перемешаны между собой произвольно, а имеют свои четко распределенные места, в примере это последовательность, в которой на первой позиции стоит буква, далее три цифры и на последних двух позициях снова буквы. Это важный момент, поскольку если бы действительно было разрешено использовать любую последовательность, возможных комбинаций было бы гораздо больше. Поскольку в латинском алфавите $26$ букв, для выбора буквы на первое место существует $26$ возможных вариантов, на второе тоже $26$, как и на третье, четвертое и т. д. То есть для того чтобы найти все комбинации из букв для $B$ мест, нужно умножить $26$ на $26$ $B$ раз. Точно так же это работает с арабскими цифрами. Их всего $10$, соответственно, умножаем $10$ на $10$ $A$ раз, где $A$ — количество мест в номерном знаке для цифр. Поэтому, чтобы найти количество возможных комбинаций букв и цифр, перемножаем полученные результаты. Отсюда получаем формулу $26^B\cdot 10^A$.

Сложность задачи заключается скорее не в формуле вычисления, а в реализации кода, поскольку большинство значений уже на этапе возведения в степень не помещаются даже в самые большие типы данных. Именно поэтому код состоит не из пяти строк и встроенной операции возведения в степень, а из более сложных операций, подходящих для работы с большими числами. По сути, у нас возникает проблема, связанная с перемножением больших чисел, которые не помещаются в стандартные типы данных С++. Для решения этой проблемы я выбрала модель представления, в которой числа записываются в виде массивов в десятичной системе, и каждая цифра числа является элементом массива. Младший разряд числа находится в нулевом элементе массива, а старший в $n-1$-ом соответственно. Далее была реализована функция «MULT», которая фактически осуществляет алгоритм умножения поэлементно с сохранением остатка от деления на $10$ в соответствующем элементе массива и добавлением частного от деления на $10$ к следующему элементу массива. Следует отметить, что данная функция принимает два числа, записанные в выше указанной модели представления (в виде массивов), и характеристиками этих чисел является пара: сам массив и количество разрядов в числе (размер массивов иными словами). На выходе функция возвращает количество разрядов полученного произведения. Сам же результат умножения сохраняется в виде массива, который является одним из параметров функции. В коде данная функция внесена в цикл для многократного перемножения чисел, то есть для возведения в нужную степень. Домножение на $10^A$ осуществляется в последнем цикле приписыванием A нулей к полученному результату.

Ссылки

Задача на сайте e-olymp
Код решения на ideone

e-olymp 3873. Счастливый номер

Условие

Подавляющее большинство людей стараются найти закономерности, которые приносят удачу! Зуб акулы в ухе папуаса — к удачной рыбной ловле. Черная кошка, которая передумала перебегать вам дорогу — к отмене контрольной. Любимая игрушка у компьютера — к удаче в командном чемпионате по программированию.

Для большинства студентов несомненным является тот факт, что номер трамвайного билетика приносит удачу. А уж если такой билетик достался перед экзаменом, пятерка обеспечена! Главное тут — четко понимать, что такое счастливый билет. И почему, спрашивается, многие считают, что только номер автобусного или троллейбусного билета может приносить удачу своему владельцу?! Чем хуже, скажем, номер паспорта или номер кассового чека в гастрономе? Главное, чтобы номер был счастливым!

Витька всегда считал, что удачу приносят такие номера, в записи которых цифры идут в неубывающем порядке. Например, счастливыми являются номера $11111$ или $12345$. Даже номер $00000$ — тоже счастливый!

Интересно, сколько счастливых номеров существует для заданной длины записи числа? Напишите программу, которая это количество вычислит.

Входные данные

Входной файл содержит единственное целое число $N$, $(1 \leq N \leq 64)$, $N$ — длина числа, для которой нужно вычислить количество счастливых номеров.

Выходные данные

Вывести одно число — количество счастливых номеров.

Тесты

Входные данные Выходные данные
1 2 55
2 4 715
3 3 220

Программный код

Решение

Для того, чтобы решить эту задачу, я начертил таблички (рис. 1.1) для всех вариантов $2$ значного числа и $1$ значного (рис. 1.2). Для $3$ значного аналогично, только рядов будет $3$. Из комбинаторики мы помним формулу: $C_n^m=\frac{n!}{m!(n-m)!}$, из которой мы получим: $(n + 9)! \over {9! \times n!}$. Потому-что из картинки мы видим что при 1 значном числе количество вариантов равно $10$. В коде я сразу сокращал на $n!$, чтобы не получались огромные числа.

рис 1.1

рис 1.2

Ссылки:
Задача на e-olymp
Код на OnlineGDB
Код на Ideone
Засчитанное решение на e-olymp

e-olymp 1327. Ладьи на шахматной доске

Задача

Ещё в детстве маленького Гарика заинтересовал вопрос: а сколькими способами на шахматной доске размером [latex]n \times n[/latex] можно расставить [latex] n [/latex] ладей так, чтобы они не били друг друга. Он очень долго решал эту задачку для каждого варианта, а когда решил — бросил шахматы.

А как быстро Вы управитесь с этой задачкой?

Входные данные

Размер шахматной доски — натуральное число, не превышающее [latex] 1000 [/latex].

Выходные данные

Выведите ответ, найденный Гариком.

Тесты

Входные данные Выходные данные
2 2
10 3628800
500 122013682599111006870123878542304692625357434280319284219241
358838584537315388199760549644750220328186301361647714820358
416337872207817720048078520515932928547790757193933060377296
085908627042917454788242491272634430567017327076946106280231
045264421887878946575477714986349436778103764427403382736539
747138647787849543848959553753799042324106127132698432774571
554630997720278101456108118837370953101635632443298702956389
662891165897476957208792692887128178007026517450776841071962
439039432253642260523494585012991857150124870696156814162535
905669342381300885624924689156412677565448188650659384795177
536089400574523894033579847636394490531306232374906644504882
466507594673586207463792518420045936969298102226397195259719
094521782333175693458150855233282076282002340262690789834245
171200620771464097945611612762914595123722991334016955236385
094288559201872743379517301458635757082835578015873543276888
868012039988238470215146760544540766353598417443048012893831
389688163948746965881750450692636533817505547812864000000000
000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000
999 402387260077093773543702433923003985719374864210714632543799
910429938512398629020592044208486969404800479988610197196058
631666872994808558901323829669944590997424504087073759918823
627727188732519779505950995276120874975462497043601418278094
646496291056393887437886487337119181045825783647849977012476
632889835955735432513185323958463075557409114262417474349347
553428646576611667797396668820291207379143853719588249808126
867838374559731746136085379534524221586593201928090878297308
431392844403281231558611036976801357304216168747609675871348
312025478589320767169132448426236131412508780208000261683151
027341827977704784635868170164365024153691398281264810213092
761244896359928705114964975419909342221566832572080821333186
116811553615836546984046708975602900950537616475847728421889
679646244945160765353408198901385442487984959953319101723355
556602139450399736280750137837615307127761926849034352625200
015888535147331611702103968175921510907788019393178114194545
257223865541461062892187960223838971476088506276862967146674
697562911234082439208160153780889893964518263243671616762179
168909779911903754031274622289988005195444414282012187361745
992642956581746628302955570299024324153181617210465832036786
906117260158783520751516284225540265170483304226143974286933
061690897968482590125458327168226458066526769958652682272807
075781391858178889652208164348344825993266043367660176999612
831860788386150279465955131156552036093988180612138558600301
435694527224206344631797460594682573103790084024432438465657
245014402821885252470935190620929023136493273497565513958720
559654228749774011413346962715422845862377387538230483865688
976461927383814900140767310446640259899490222221765904339901
886018566526485061799702356193897017860040811889729918311021
171229845901641921068884387121855646124960798722908519296819
372388642614839657382291123125024186649353143970137428531926
649875337218940694281434118520158014123344828015051399694290
153483077644569099073152433278288269864602789864321139083506
217095002597389863554277196742822248757586765752344220207573
630569498825087968928162753848863396909959826280956121450994
871701244516461260379029309120889086942028510640182154399457
156805941872748998094254742173582401063677404595741785160829
230135358081840096996372524230560855903700624271243416909004
153690105933983835777939410970027753472000000000000000000000
000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000

Программный код

Алгоритм решения

Алгоритм решения данной задачи заключается в том, что нужно вычислить [latex]n! = 1\times 2\times 3\times \cdots\times n [/latex] , используя длинную арифметику ( умножение длинного числа на короткое ).
Иллюстрация для восьми ладей:

В коде № 1 разбиваем вектор на ячейки по три цифры. Но, некоторые ячейки могут иметь менее чем три цифры. С учетом того, что перенос может состоять не из трех цифр, следует выводить результат так: cout << setw(3) << setfill('0') << res[i];.
В коде № 2 разбиваем строку посимвольно.

Детали реализации

  • Безусловно, для использования векторов и строк нам понадобятся соответствующие  библиотеки: #include и #include .
  • Для вывода данных в коде № 1 стоит подключить библиотеку #include .

Ссылки :
Задача на e-olymp
Код № 1 на ideone
Код № 2 на ideone
Засчитанное решение № 1
Засчитанное решение № 2

e-olymp 9036. Комбинация игральных костей

Задача

Подсчитайте количество способов, которыми можно получить сумму $n$ бросая игральный кубик один или несколько раз. Каждый бросок дает результат между 1 и 6.

Например, если $n = 3$, то имеется 4 способа:
1 + 1 + 1
1 + 2
2 + 1
3

Входные данные

Одно целое число $n$ $(1 \leqslant n \leqslant 10^6)$.

Выходные данные

Выведите количество способов по модулю $10^9+7$.

Тесты

Входные данные  Выходные данные
1 1 1
2 3 4
3 5 16
4 6 32
5 8 123

Код программы

Первый способ (выполняется быстрее, но использует больше памяти)

Второй способ (использует меньше памяти, но выполняется дольше)

 

Решение

Создадим массив на $n+1$ элемент. В который мы сразу запишем количество перестановок для сумм 1,2..,6. Для остальных случаев, когда $n>7$ воспользуемся следующей идеей. Будем вычислять количество перестановок для сумм, начиная с 7 до тех пор, пока не дойдем до заданного нам $n$. Будем делать это по такой формуле $a_{i}=a_{i-1}+a_{i-2}+a_{i-3}+a_{i-4}+a_{i-5}+a_{i-6}$  . Для первых шести сумм вычисляем по этой же формуле, с учетом, что $0 < i-k \; (1 \leqslant k \leqslant 6)$ и добавляя еще 1 перестановку, так как мы можем получить сумму ( $i$ ), подбросив кубик 1 раз. Рассмотрим для $n=7$. Чтобы получить 7 достаточно подбросить кубик ещё один раз, так как мы знаем количество для $n$ от 1 до 6. Если выпадет 1, то остается $a_{6}$ возможных перестановок, если выпадет 2, то остается  $a_{5}$  и так далее. Затем нам требуется просуммировать, так как кубик может выпасть 6 способами, как было сказано ранее. Соответственно для $n=8$ количество комбинаций увеличится на  $a_{7}$ и уменьшится на  $a_{1}$, так как кубик имеет только 6 граней.

Ссылки

Условие задачи на e-olymp

Код программы на ideone

e-olymp 7534. Замкнутое сокровище

Задача взята с сайта e-olymp

Задача

Группа из $n$ бандитов спрятала украденное сокровище в комнате. Дверь в комнату следует отпереть только когда понадобится вынести сокровище. Так как бандиты не доверяют друг другу, они хотят иметь возможность открыть комнату и унести украденное только если этого захотят не менее $m$ из них.

Они решили разместить несколько замков на двери таким образом, чтобы она открывалась только когда открыты все замки. Каждый замок может иметь до $n$ ключей, распределенных среди некоторого подмножества бандитов. Группа бандитов может открыть замок, только если кто-то в группе имеет ключ к этому замку.

По имеющимся значениям $n$ и $m$ определить такое наименьшее количество замков, что если ключи от них правильно распределить среди бандитов, то каждая группа состоящая из не менее чем $m$ бандитов сможет открыть все замки, но никакая группа из меньшего числа бандитов открыть все замки не сможет.

Например, если $n = 3$ и $m = 2$, то достаточно $3$ замков — ключи от замка $1$ получают бандиты $1$ и $2$, ключи от замка $2$ получают бандиты $1$ и $3$, ключи от замка $3$ получают бандиты $2$ и $3$. Ни один из бандитов не может открыть все замки самостоятельно, но любая группа из $2$ бандитов может открыть все замки. Можно убедиться, что $2$ замков для этого случая не достаточно.

Входные данные

Первая строка содержит количество тестов. Каждая следующая строка является отдельным тестом и содержит два числа $n(1 \leqslant n \leqslant 30)$ и $m(1 \leqslant m \leqslant n)$.

Выходные данные

Для каждого теста вывести в отдельной строке минимальное количество необходимых замков.

Тесты

#   ВХОДНЫЕ ДАННЫЕ ВЫХОДНЫЕ ДАННЫЕ
1 4
3 2
5 1
10 7
5 3
3
1
210
10
2 2
5 3
3 2
10
3
3 6
2 1
7 2
3 1
5 4
3 2
9 2
1
7
1
10
3
9

Код программы

Решение

Для каждой группы из $m-1$ бандитов существует замок такой, что его могут открыть все остальные группы, кроме этой. Потому что, просто обьеденив две группы с одинаковыми замками, мы получим одну большую чем $m-1$, которая не может открыть замок. Таким образом, всего должно быть столько замков, сколько существует способов выбрать $m-1$ группу из $n$ бандитов. То есть $C_{n}^{m-1}$.
Для нахождения биномиальных коэффициентов воспользуемся треугольником Паскаля, который будем хранить в двумерном массиве.

Ссылки

Условие задачи на e-olymp

Код программы на ideone

Треугольник Паскаля на Wikipedia

e-olymp 1325. Васькины дорожки

Задача. Васькины дорожки

Кот Василий узнал, что у соседа Димы, проживающего от него через какое-то количество заборов завелись мыши. Так как в своём хозяйстве всех мышей он уже давно выловил, кот отправляется на охоту за мышами к соседу, пролезая через дыры в ограде. На каждом участке Василий, как любой воспитанный кот, перемещается по уже проложенным там тропинкам. В деревне Старые Васюки, где проживает Василий, всего одна улица и та протянулась вдоль реки, поэтому домики расположены только по одну сторону улицы. Известно, что между любыми соседними участками в заборе ровно одна дыра. Сколькими способами Василий может попасть на участок Димы, если известно, что Дима проживает на участке под номером $k,$ а сам Василий проживает на участке под номером $m$?

Входные данные

В единственной строке находятся через пробел сначала количество домов в деревне $n,$ затем номер участка Василия $m,$ номер участка Димы $k,$ а далее $n$ чисел, обозначающее количество тропинок, ведущих либо к дыре в заборе, либо от дыры в заборе, либо между дырами в заборе соседей $i$ и $i+1.$ Все входные данные натуральные числа, не превышающие $10.$

 

Выходные данные

Единственное число — количество различных способов для Василия попасть на нужный участок для охоты.

Тесты

Ввод Вывод
1 3 2 3 4 5 3 15
2 10 5 7 1 2 3 4 5 6 7 8 9 10 210
3 4 2 1 3 4 7 8 12
4 10 8 8 1 9 6 7 5 3 8 2 4 10 2
5 1 1 1 1 1
6 10 1 10 1 1 1 1 1 1 1 1 1 10 10
7 7 5 3 2 2 2 4 4 4 5 32
8 10 1 10 10 10 10 10 10 10 10 10 10 10 10000000000
7 5 3 2 1 2 3 4 5 6 7 8 9 10 6

Решение

Что бы определить количество различных способов попасть на нужный участок мы должны, сначала, посчитать сколькими способами кот Василий может пересечь (по тропинкам) участок на котором он находится. Затем, для каждого из возможных вариантов пересечения первого участка посчитать сколькими способами Василий может пересечь второй участок и так далее, до заданного. Таким образом общее количество вариантов попасть, для нашего друга, из участка $m$ в участок $k$ является произведением количества вариантов пересечения каждого участка в отдельности.

Прочтём значения $n$, $m$ и $k$. Переменная rez будет хранить результат. В цикле от $1$ до наибольшего номера из участков Димы и Василия, будем проверять достигли ли мы наименьшего номера их участков. По достижении начинаем перемножать количества тропинок ведущих к дыркам в заборе. Мы можем это делать с начиная с любого из участков так как операция умножения коммутативна. Завершив цикл в переменной rez у нас уже будет правильный ответ. Выведем его.

Типа данных  unsigned long хватит по условию данной задачи, так как все числа натуральные, а значит большие $0$. И не превышают $10$, следовательно максимальное значение переменной  rez будет $10^{10}$ что помещается в unsigned long.

Код

Условие задачи

Решение

Код на ideone

e-olymp 8514. Never drink too much!

The task is taken from e-olymp

Task

Mahmoud together with his friends visited Georgia. They would stay in a hotel at Rustavelli. When the cowboys reached the hotel, they hung their hats in the entrance and settled in. The beer bottles on the table could not escape from Mahmoud’s attention when passing through the corridor. At the suggestion of Mahmoud, all the cowboys began drinking. They drank too much, thus none of them was mindful. Then they decided going downtown. On the way out, everyone had a hat on, but they mixed up the hats as they were so drunk.

The man who is able to have on his own hat while he is drunk is considered clever and who is not able to do so is considered stupid.

You are given the number of cowboys — n (including Mahmoud). You should find in how many ways the cowboys may have on the hats so that all of them are stupid. Two ways are considered different if there is at least one cowboy who has a hat in this case and another hat in the other case.

As the answer may become very large, you should output the result modulo 109 + 7.

Input

Given the number of cowboys — n (1 ≤ n ≤ 107).

Output

The answer to the problem as specified above.

Tests

Inputs Outputs
1
1 0
2
4 9
3
9 133349
4
555 335132588
5
10000000 824182295

Code

 

Solution

We have all possible permutations [latex]C_n^0 \cdot n![/latex] , minus one fixed (one of them is not stupid) we get [latex]C_n^0 \cdot n!-C_n^1 \cdot (n-1)![/latex] but we subtract for minimum fixed pair (two of them are not stupid) we need to add them [latex]C_n^0 \cdot n!-C_n^1 \cdot (n-1)! + C_n^2 \cdot (n-2)! [/latex] etc.
So the [latex]k[/latex] member is [latex]C_n^k \cdot (n-k)! \cdot (-1)^k[/latex]
Let`s find the attitude of [latex]k[/latex] member to the previous one. It`s [latex]-k -1[/latex]
The last one will be [latex]-1[/latex] it depends on parity of [latex]n[/latex].
First two are the same ( [latex]n![/latex] ) so we skip them, but in this case we need to check if[latex]n[/latex] equals [latex]1[/latex]
And next we make a loop to find the answer by multiplying start value and add it to the answer.
The complexity is [latex]O(n)[/latex]

Links

ideone
e-olymp

e-olymp 1326. В хоккей играют настоящие…

Задача

prb1326 Лесные жители решили провести хоккейный турнир между $N$ командами. Сколькими способами могут быть распределены комплекты золотых, серебряных и бронзовых медалей, если одно призовое место может занять только одна команда?

Входные данные

В единственной строке расположено единственное натуральное число $N$, не превышающее 100.

Выходные данные

Единственное число — искомое количество способов.

Тесты

Ввод Вывод
1 1 1
2 2 2
3 3 6
4 5 60
5 56 166320
6 100 970200

Код

Решение

Чтобы рассчитать количество способов воспользуемся формулой размещения из комбинаторики $A_N^k = \frac{N!}{(N−k)!}$, где $k = 3$, так как существует всего 3 призовых места и следовательно комплекты медалей можно распределить $N$$(N — 1)$$(N — 2)$ способами, при $N >= 3$. При $N < 3$ существует всего $N$ способов распределения, так как команд меньше чем призовых мест.

Ссылки

e-olymp
ideone

e-olymp 1289. Ланч

Задача

Влад хочет взять с собой для ланча пару фруктов. У него есть $a$ различных бананов, $b$ различных яблок и $c$ различных груш. Сколькими способами он может выбрать 2 разных фрукта из имеющихся у него?

Входные данные

В одной строке заданы три неотрицательных числа: $a$, $b$, $c$. Все числа не превышают [latex]10^6[/latex].

Входные данные

Вывести количество способов, которыми можно выбрать 2 фрукта разного вида.

 

Тесты

Вход Выход
2 3 4 26
6 2 4 44
0 4 8 32
1052 886 225 1368122
772 621 124 652144

Код программы

Решение

Пусть у нас $1$ банан и $b$ различных яблок. Мы можем взять $1$ банан  и одно яблоко $b$ способами. Так как бананов $a$, по одному яблоку и банану можем взять [latex](a \cdot b)[/latex] способами. Аналогично, так как груш $с$,  то есть [latex](a \cdot с)[/latex] способов взять по одному банану и одну грушу, и [latex](c \cdot b)[/latex] способов взять по одному яблоку и одну грушу. То есть всего [latex](a \cdot b + b \cdot c + c \cdot a) [/latex].

Ссылки

e-olymp

ideone

e-olymp 97. Числа Белла

Задача

Число Белла [latex]B_n[/latex] равно количеству разбиений множества из [latex]n[/latex] элементов на произвольное количество непересекающихся непустых подмножеств. Например, [latex]B_3 = 5[/latex], так как существует [latex]5[/latex] возможных разбиений множества [latex]\lbrace a, b, c\rbrace[/latex]: [latex]\lbrace\lbrace a\rbrace, \lbrace b\rbrace, \lbrace c\rbrace\rbrace, \lbrace\lbrace a, b\rbrace, \lbrace c\rbrace\rbrace, \lbrace\lbrace a, c\rbrace, \lbrace b\rbrace\rbrace, \lbrace\lbrace a\rbrace, \lbrace b, c\rbrace\rbrace, \lbrace\lbrace a, b, c\rbrace\rbrace[/latex]. Дополнительно считаем, что [latex]B_0 = 1[/latex].
Рассмотрим определитель [latex]D_n[/latex]:
$$D_n = \begin{vmatrix}
B_0& B_1& B_2&\ldots& B_n\\
B_1& B_2& B_3&\ldots& B_{n+1}\\
\ldots& \ldots& \ldots& \ldots& \ldots\\
B_n& B_{n+1}& B_{n+2}&\ldots& B_{2n}
\end{vmatrix}$$
Для заданного простого числа [latex]p[/latex] найти наибольшее целое [latex]k[/latex], для которого [latex]D_n[/latex] делится на [latex]p^k[/latex].

Входные данные

Каждая строка ввода содержит два целых числа [latex]n[/latex] и [latex]p[/latex] ( [latex]\;0\leq\; n,\;p \;\leq\; 10000[/latex] ). Известно, что [latex]p[/latex] – простое.

Выходные данные

Для каждой пары входных значений [latex]n[/latex] и [latex]p[/latex] в отдельной строке выведите наибольшее целое [latex]k[/latex], для которого [latex]D_n[/latex] делится на [latex]p^k[/latex].

Тесты

Входные данные Выходные данные
1 5
3 2
4 2
4 3
10000 3
0
2
5
2
24962375
18 2
465 1009
9998 9221
548 11
134
0
778
14412
1093 1093
1103 1723
3931 617
4868 6113
9534 71
1
0
10635
0
639989
617 17
42 11
0 5
11295
63
0

Код программы

 

Решение

Числа Белла обладают интересным свойством:
$$D_n = \begin{vmatrix}
B_0& B_1& B_2&\ldots& B_n\\
B_1& B_2& B_3&\ldots& B_{n+1}\\
\ldots& \ldots& \ldots& \ldots& \ldots\\
B_n& B_{n+1}& B_{n+2}&\ldots& B_{2n}
\end{vmatrix} = \prod_{i=1}^n i! $$

Воспользуемся этим свойством для решения данной задачи. Найдём степень числа [latex]p[/latex] в разложении  на простые множители. Для этого узнаем степень вхождения этого числа в каждый из факториалов. Суммой полученных значений и будет являться искомое число [latex]k[/latex].

Ссылки

Условия задачи на e-olymp
Код задачи на ideone
Число Белла на wikipedia

e-olymp 239. Треугольники

Задача

На плоскости задано [latex]n[/latex] точек с целочисленными координатами. Никакие три точки не лежат на одной прямой. Определить [latex]k[/latex] — количество треугольников с вершинами в заданных точках и целочисленной площадью.

Входные данные

В первой строке содержится число [latex]n[/latex]. В последующих [latex]n[/latex] строках содержаться пары целых чисел — координаты очередной точки [latex](x_i, y_i)[/latex]. Известно, что [latex]0 < n, |x_i|,|y_i| \leq 5000 [/latex].

Выходные данные

Искомое число [latex]k[/latex].

Тесты

Входные данные Выходные данные
5
2 -1
3 0
0 4
-3 0
-2 1
6
5
0 0
2 4
6 6
10 34
-42 -48
10
4
0 0
0 1
1 0
1 1
0
8
0 0
2 2
1 1
3 3
0 1
2 1
1 0
1 2
24
5
0 0
0 1
-1 0
-1 -1
3 -3
3

 

Решение задачи

Учитывая теорему Пика, получаем, что площадь каждого из треугольников, которые можно составить, либо равна целому числу, либо помимо целой части содержит [latex]\frac{1}{2}[/latex].  Нас интересует лишь четность псевдоскалярного(косого) произведения. Берем у всех координат остаток от деления на [latex]2[/latex]. Получаем не более [latex]4[/latex] различных точек: [latex] (0;0), (0;1), (1;0), (1;1)[/latex]. Составляем все возможные треугольники из полученных точек, и считаем те, у которых формула дает четное число, учитывая количество координат каждого типа.

Ссылки

Условие задачи на сайте  E-Olymp

код задачи на Ideone

описание теоремы Пика на Wikipedia

описание псевдоскалярного произведения на Wikipedia

e-olymp 1503. Вписанные треугольники

Задача

Пример первого теста на графике

На границе окружности с центром в начале координат и радиусом $r$ заданы $n$ различных точек. Поскольку все точки расположены на одной окружности, то любые три из них не коллинеарны, и поэтому образуют треугольник. Вам необходимо вычислить суммарную площадь всех этих $C_{n}^3$ треугольников.

Входные данные
Состоит из не более чем $16$ тестов. Каждый тест начинается двумя целыми числами $n \left(0 ≤ n ≤ 500\right)$ и $r \left(0 < r ≤ 100\right)$. Через $n$ обозначено количество точек, а через $r$ радиус окружности. Центр окружности находится в центре координат. Дальше следуют $n$ строк, каждая из которых содержит действительное число $θ \left(0 ≤ θ < 360 \right)$, которое определяет угол в градусах между точкой и направлением $x$-оси. Например, если $θ$ равно $30$ градусов, то соответствующая точка имеет декартовы координаты $\left(r \cdot \cos(30°), r \cdot \sin(30°) \right)$. Последняя строка содержит $n = r = 0$ и не обрабатывается.

Выходные данные
Для каждого теста в отдельной строке вывести целое число — суммарную площадь (округленную до ближайшего целого) всех возможных треугольников, образованных заданными $n$ точками.

Тесты

Входные данные Выходные данные
5 10
10
100
300
310
320
3 20
10
100
300
0 0
286
320
3 5
25
176
243
0 0
25
4 20
30
80
130
330
0 0
822
2 7
30
230
0 0
0

Код программы

Решение задачи

Радианная мера точек заносится в массив, после чего массив сортируется по возрастанию с помощью функции  sort().

В переменную res  изначально заносится площадь, равная площади кругов радиуса $r$,
то есть значение $C_{n}^3 \cdot \pi \cdot r^2 = n(n-1)(n-2)(n-2)\pi \cdot \frac{r^2} {6}$. Значение $\frac{r^2} {2}$ присваивается переменной r2, а sq – площадь одного круга, то есть $\pi \cdot r^2$.

Перебираются пары точек, а затем вычисляется угол.
Если угол меньше, то проходимся по меньшему сегменту, площадь которого равна $\pi r^2-0.5r^2(\alpha-\sin \alpha)$, $\alpha = 2\pi -\alpha$. В ином случае мы проходим по большему сегменту.
В любом случае переменной s  присваивается площадь сегмента, который мы проходим от $P_{i}$ к $P_{j}$ при движении против часовой стрелки.

Количество точек, лежащих на сегменте, равно $n-(j-i+1)$.
Значит, из переменной res необходимо вычесть площадь сегмента s такое количество раз, которому равно количество точек, то есть pts .

Количество точек, которые лежат на сегменте площади s , равно $n-2-  $  pts.
Площадь противоположного сегмента равна разности площади круга и сегмента. Для получения ответа вычитаем площадь противоположного сегмента из переменной res такое количество раз, которое равно значению переменной  pts и выводим полученное значение.

Ссылки

Условие задачи на e-olymp.com
Решение задачи ideone.com

A1029

Задача о восьми мирных ладьях

Задача о восьми мирных ладьях

Условие

Получить все расстановки   [latex]8[/latex]   ладей на шахматной доске, при которых ни одна ладья не угрожает другой.


Решение

Для начала, выясним, а сколько существует таких расстановок, при условии, что рассматривается стандартная шахматная доска   [latex]8 \times 8[/latex].

Ладья находится под боем, если другая ладья находится с ней на одной строке или в одном столбце. Следовательно, фиксируя, скажем, столбцы, можно разместить ладьи по строкам таким образом, чтобы ни одна пара не находилась под боем.

Заведем массив на восемь элементов и занумеруем его таким образом, чтобы значение   [latex]j[/latex]   по индексу   [latex]i[/latex]   соответствовало строке [  [latex]j[/latex],   в которой находится ладья в   [latex]i[/latex]-м столбце.

Теперь легко видеть, что положение на доске определяется перестановкой чисел   [latex]1,..,8[/latex].   Как известно, число различных перестановок длины [latex]n[/latex]   —   [latex]P_{n}=n![/latex]. Следовательно, всего существует   [latex]8!=40320[/latex]   различных расстановок ладей.

Реализация
ideone: http://ideone.com/tBySY4
Легенда: R — Rook — ладья


Детали реализации

Для получения перестановок использована функция стандартной библиотеки [latex]next\_permutation()[/latex]

В силу большого объёма выходного файла (5.5 мб) он доступен отдельно, по ссылке: https://www.dropbox.com/s/yyaz7vq08jczsnl/out?dl=0

А1033

Условие

Получить все размещения из [latex]9[/latex] элементов [latex]\left\{1,2, \ldots, 9\right\}[/latex] по [latex]5[/latex] элементов в каждом.

Код на С++

 

Код на Java:

 

Решение

При решении этой задачи мне понадобились 2 источника информации:

Там были приведены алгоритмы генерирования перестановок («Комбинаторные алгоритмы», стр. 27-29) и генерирования сочетаний («Комбинаторика для программистов», стр. 39-41).
Размещения я получал следующим образом:

  • Посчитал кол-во всевозможных размещений по формуле [latex]A^{k}_{n}=\frac{n!}{(n-k)!}=\frac{9!}{4!}=15120[/latex];
  • Заметил, что размещения — это перестановки всех уникальных комбинаций из 5 чисел (т.е сочетаний);
  • Поскольку кол-во перестановок [latex]P_{k}=k![/latex], а кол-во сочетаний — [latex]C_{n}^{k}=\frac{n!}{k!(n-k)!}[/latex], то кол-во размещений [latex]A_{n}^{k}=P_{k}\times{C_{n}^{k}}=\frac{n!k!}{k!(n-k)!}=\frac{n!}{(n-k)!}=15120[/latex];

Таким образом, генерируя вначале сочетание, я генерировал перестановки этого сочетания. В результате вышло 15120 размещений.

e-olimp 4475. Часы

4475. Часы

Постановка задачи

Ученые разработали часы, которые могут налаживаться для отсчета времени на любой планете. Они состоят из шариков, лотка (очереди) и трех чаш: секундной, минутной и часовой. В каждый момент времени количество шариков в чашах показывает время (секунды, минуты и часы соответственно). Каждую секунду первый шарик из очереди попадает в секундную чашу. Если секундная чаша наполнилась (количество шариков равно количеству секунд в минуте на этой планете), то этот шарик переходит в минутную чашу, а остальные шарики переходят из секундной чаши в конец очереди в порядке, обратном к их попаданию в секундную чашу. Аналогично, при наполнении минутной чаши последний шарик переходит в часовую чашу, а остальные шарики из минутной чаши переходят в конец очереди в порядке, обратном к их попаданию в минутную чашу. Если заполняется часовая чаша, то все шарики из нее переходят в конец очереди в порядке, обратном к их попаданию в часовую чашу. Все шарики пронумерованы и в начальный момент времени находятся в очереди.

Написать программу, вычисляющую минимальное количество суток, необходимых для того, чтобы начальное положение шариков в очереди повторилось.

Во входном потоке содержится количество секунд в минуте [latex]S[/latex], минут в часе [latex]M[/latex], часов в сутках [latex]H[/latex] и число шариков [latex]K[/latex].

Алгоритм решения

  1. Интуитивно понятно, что положение шариков в очереди ежесуточно изменяется по одному и тому же закону, в силу однообразия процесса. Отыскать конкретный вид перестановки можно прямым моделированием часов, используя дек для описания лотка и стеки — каждой из чаш (у очереди задействованы оба конца, у чаш — только один).
  2. Определить порядок суточной перестановки можно и возведением её в степень, но это нерациональный способ. Используя теорему о разложении перестановки в композицию циклов (к слову, непересекающихся), можно заметить, что порядок каждого из циклов равен его длине. Если мысленно представить перестановку в виде ориентированного графа, то процесс поиска циклов сведётся к поиску в глубину: обойти каждую компоненту связности, зафиксировать число входящих в неё вершин (на илл.)
  3. Зная длины всех циклов, нетрудно заметить, что задача сводится к поиску НОК полученной последовательности длин. Обосновать такой переход можно индуктивно: порядок перестановки, представимой в виде композиции двух циклов, равен НОК их длин, а случай большего количества циклов в разложении сводится к рассмотренному последовательным рассмотрением пар циклов (результат не зависит от порядка рассмотрения в силу ассоциативности композиции).

Реализация:

ideone: http://ideone.com/nz2JlG
Засчитанное решение: http://www.e-olimp.com/solutions/1937971

Примечания

  • Экспериментально выяснено, что только тип long double является достаточно вместительным для избежания переполнения.
  • Операция взятия остатка для чисел с плавающей точкой не определена аппаратно, так что алгоритм Евклида вычисления НОД реализован в соответствии с его математическим описанием.
  • Модификатор fixed используется для предотвращения вывода чисел в научном формате (с использованием степеней десятки).

А36

Задача: Даны действительные числа [latex]a[/latex], [latex]b[/latex], [latex]c[/latex]Проверить, выполняются ли неравенства  [latex]a<b<c[/latex].

Тесты:

Ввод Вывод Результат
a b c неравенство                     не выполнено
2 1 3 b<=a<c: нер-во a<b<c                 не выполняется неравенство                     не выполнено
1 3 2 a<=c<=b: нер-во a<b<c                 не выполняется неравенство                     не выполнено
3 1 2 b<=c<=a: нер-во a<b<c                 не выполняется неравенство                     не выполнено
3 2 1 c<=b<=a: нер-во a<b<c                 не выполняется неравенство                     не выполнено
2 3 1 c<=a<b: нер-во a<b<c                 не выполняется неравенство                     не выполнено
1 2 3 нер-во a<b<c справедливо неравенство выполнено

Код программы:

Отчет:

После ввода чисел a, b, c программа проверит их соотношения. Ввиду наличия трех сравниваемых чисел имеем 3! = 6 возможных комбинаций чисел, и только одна из них соответствует требованию. Если неравенство [latex]a<b<c[/latex] имеет место быть, то программа сообщит о его выполнении. В противном же случае консоль выдаст ответ о не выполненном неравенстве, предварительно сообщив причину.

Копия кода на сайте Ideone: ideone.com/aYmMJ2