e-olymp 8963. Наименьшие влево

Условие

Задан массив из [latex]n[/latex] целых чисел. Переместить все минимальные элементы в начало массива, не меняя порядок других.

Входные данные

В первой строке записано натуральное число [latex]n[/latex]. В следующей строке записаны [latex]n[/latex] целых чисел. Все числа по модулю не превышают [latex]100[/latex].

Выходные данные

Выведите элементы обновленного массива.

Тесты

Ввод Вывод
1 7
6 -3 -7 4 -7 -4 5
-7 -7 6 -3 4 -4 5
2 2
100 -100
-100 100
3 6
-2 -2 7 3 99 -2
-2 -2 -2 7 3 99
4 5
1 1 1 1 1
1 1 1 1 1

Решение

Вместо обычных массивов будем использовать векторы, чтобы было удобнее добавлять элементы в конец. Минимальный элемент можно найти с помощью простого цикла: если какой-либо элемент вектора меньше min, то min присваивается значение этого элемента, и так пока не найдено наименьшее число. Подсчитаем, сколько раз оно встречается в векторе. Столько же раз его нужно добавить в новый вектор. Наконец, переносим в v2 все оставшиеся элементы, не равные min.

Код программы

Ссылки

решение на E-olymp
код на ideone

Переставить соседние

Задача

Задан массив из $n$ целых чисел. Переставьте соседние элементы массива ($a_{0}$ с $a_{1}$, $a_{2}$ с $a_{3}$ и так далее). Если элементов нечетное количество, то последний элемент следует оставить на своем месте.

Входные данные

В первой строке записано число $n$. В следующей строке записано $n$ целых чисел. Все числа по модулю не превышают $100$.

Выходные данные

Вывести обновленный массив.

Тесты

Входные данные Выходные данные
7
3 5 -7 7 5 -9 -4
5 3 7 -7 -9 5 -4
8
-9 81 27 -38 2 6 -56 -21
81 -9 -38 27 6 2 -21 -56
2
25 -76
-76 25
3
55 44 33
44 55 33
1
99
99

Код

Решение

Чтобы поменять местами соседние элементы массива, заведем переменную, в которой и будет происходить обмен. Каждый нечетный по счету элемент меняем местами с предыдущим. Например, arr[1] с arr[0], arr[3] с arr[2] и так далее до конца массива. При этом совершенно не важно, четное кол-во элементов или нечетное.

Ссылки

Условие задачи на E-Olymp
Код задачи на Ideone

e-olymp 7847. Кількість різних елементів

Задача

Дано масив з N цілих чисел. Визначте, скільки в цьому масиві різних елементів,

Вхідні дані

В першому рядку записано число N. В наступному рядку записано N цілих чисел. Всі числа за модулем не перевищують 100.

Вихідні дані

Кількість різних елементів в масиві.

Тести

 

Вхідні дані Вихідні дані
1. 7
3 5 -7 7 5 -9 -4
6
2. 5
1 25 59 75 100
5
3. 6
1 2 3 1 2 4
4

Код

Решение

Ставим отметку числу как будто видим его впервые.
Далее задача пройти по всем предыдущим числам и проверить не встретится ли такое же число.
Если встретится, то отметку снимаем, а пройдя по всем предыдущим числам так и не встретив числа равного текущему, значит «видим его впервые» и отметка поставлена справедливо.
Считаем количество отметок.

Ссылки

 

 

 

 

e-olymp 1290. Номерной знак

Задача

Международный номерной регистрационный знак легкового автомобиля состоит из $A$ арабских цифр и $B$ больших букв латинского алфавита. Будем считать, что для обеспечения уникальности номера разрешено использовать любую последовательность букв и цифр.

Сколько существует различных таких номеров?

Входные данные

В единственной строке через пробел $2$ неотрицательных целых числа $B$ и $A$. Оба числа не превышают $26$.

Выходные данные

Единственное число — ответ к задаче.

Тесты

Входные данные Выходные данные
1 3 3 17576000
2 2 5 67600000
3 7 1 80318101760
4 1 1 260
5 26 26 615611958020715731079667428840020377600000000000000000000000000

Код

Решение

Начнем с того, что к условию задачи прилагается картинка, на которой видно, что во всех номерных знаках буквы и цифры не перемешаны между собой произвольно, а имеют свои четко распределенные места, в примере это последовательность, в которой на первой позиции стоит буква, далее три цифры и на последних двух позициях снова буквы. Это важный момент, поскольку если бы действительно было разрешено использовать любую последовательность, возможных комбинаций было бы гораздо больше. Поскольку в латинском алфавите $26$ букв, для выбора буквы на первое место существует $26$ возможных вариантов, на второе тоже $26$, как и на третье, четвертое и т. д. То есть для того чтобы найти все комбинации из букв для $B$ мест, нужно умножить $26$ на $26$ $B$ раз. Точно так же это работает с арабскими цифрами. Их всего $10$, соответственно, умножаем $10$ на $10$ $A$ раз, где $A$ — количество мест в номерном знаке для цифр. Поэтому, чтобы найти количество возможных комбинаций букв и цифр, перемножаем полученные результаты. Отсюда получаем формулу $26^B\cdot 10^A$.

Сложность задачи заключается скорее не в формуле вычисления, а в реализации кода, поскольку большинство значений уже на этапе возведения в степень не помещаются даже в самые большие типы данных. Именно поэтому код состоит не из пяти строк и встроенной операции возведения в степень, а из более сложных операций, подходящих для работы с большими числами. По сути, у нас возникает проблема, связанная с перемножением больших чисел, которые не помещаются в стандартные типы данных С++. Для решения этой проблемы я выбрала модель представления, в которой числа записываются в виде массивов в десятичной системе, и каждая цифра числа является элементом массива. Младший разряд числа находится в нулевом элементе массива, а старший в $n-1$-ом соответственно. Далее была реализована функция «MULT», которая фактически осуществляет алгоритм умножения поэлементно с сохранением остатка от деления на $10$ в соответствующем элементе массива и добавлением частного от деления на $10$ к следующему элементу массива. Следует отметить, что данная функция принимает два числа, записанные в выше указанной модели представления (в виде массивов), и характеристиками этих чисел является пара: сам массив и количество разрядов в числе (размер массивов иными словами). На выходе функция возвращает количество разрядов полученного произведения. Сам же результат умножения сохраняется в виде массива, который является одним из параметров функции. В коде данная функция внесена в цикл для многократного перемножения чисел, то есть для возведения в нужную степень. Домножение на $10^A$ осуществляется в последнем цикле приписыванием A нулей к полученному результату.

Ссылки

Задача на сайте e-olymp
Код решения на ideone

e-olymp 5041. Синтаксический анализ вещественных чисел

Задача

Напишите программу, которая считывает строку и проверяет, содержит ли она действительное число. Действительное число может содержать десятичную точку или показатель степени (начинающийся с $ e $ или $ E $), или и то и то одновременно. Также число может содержать обыкновенный набор десятичных цифр. Если число содержит десятичную точку, то должна присутствовать хотя бы одна цифра с каждой стороны точки. Перед числом или экспонентой может находиться плюс или минус (или одновременно и там и там) (без пробелов после знака). Экспонентой является целое число (не содержит десятичной запятой). Пробелы могут присутствовать до или после числа, но не внутри него. Обратите внимание, что границ диапазона входных чисел не существует, но для простоты будем предполагать, что входные строки содержат не более $ 1000 $ символов.

Входные данные

Первая строка содержит количество тестов $ t $. Дальше следует $ t $ строк, каждая из которых содержит одно число.

Выходные данные

Вывести $ t $ строк, каждая из которых содержит слово $ LEGAL $ или $ ILLEGAL $.

Тесты

Входные данные Выходные данные
1. 2
1.5e+2
3.
LEGAL
ILLEGAL
2. 4
752.45e+24
0.762e.
-0.355.6432e
LEGAL
ILLEGAL
ILLEGAL
3. 1
-652.32e+45
LEGAL
4. 3
542.512e+3
123.456E+42
123.456.789
LEGAL
LEGAL
ILLEGAL

Код

Решение

Для решения задачи нам понадобится функция idigit() проверки того, является ли символ цифрой. В STL существует одноименная функция, которая выполняет ту же самую задачу, однако для практики, я написал свою. В функции анализа вещественных чисел isreal() нужно указать условия, при которых синтаксис будет нарушен. Т.е. не будут выполнены условия, описанные в задаче. Затем, если в символьном массиве не было замечено ошибок — возвратить trueв основную функцию. Важно то, что в числе не должно по условию быть других символов кроме «e», «E», «.», «+», «-» и цифр. Что касается окаймляющих пробелов, то при вводе строки через cin они игнорируются.

Ссылки

Условие задачи на e-olymp
Код программы на ideone.com
Засчитанное решение на e-olymp

e-olymp 798. Платформы

Условие

В старых играх можно столкнуться с такой ситуацией. Герой прыгает по платформам, висящим в воздухе. Он должен перебраться от одного края экрана до другого. При прыжке с платформы на соседнюю у героя уходит $|y_{2} — y_{1}|$ энергии, где $y_{1}$ и $y_{2}$ — высоты, на которых расположены эти платформы. Кроме того, есть суперприём, позволяющий перескочить через платформу, но на это затрачивается $3\cdot\left|y_{2} — y_{1}\right|$ энергии.

Известны высоты платформ в порядке от левого края до правого. Найдите минимальное количество энергии, достаточное, чтобы добраться с $1$-ой платформы до $n$-ой (последней) и список (последовательность) платформ, по которым нужно пройти.

Входные данные

Первая строка содержит количество платформ $n  (2 \leqslant n \leqslant 100000)$, вторая $n$ целых чисел, значения которых не превышают по модулю $400$ — высоты платформ.

Выходные данные

В первой строке выведите минимальное количество энергии. Во второй — количество платформ, по которым нужно пройти, а в третьей выведите список этих платформ.

Тесты

Ввод Вывод
1 4
1 2 3 30
29
4
1 2 3 4
2 2
7 23
16
2
1 2
3 5
0 1 0 1 0
0
3
1 3 5

Код

Решение

Для решения данной задачи используем несколько массивов для хранения значений затраченной энергии и подсчета платформ. Начнём с энергии. По условию у нас есть два приема для прыжка с одной платформы на другую:

  1. Прыжок с платформы на соседнюю. Затрачивается $|y_{2} — y_{1}|$ энергии. В дальнейшем для упрощения этот вид прыжка будет называться «обычным».
  2. Суперприём — прыжок, позволяющий перескочить через платформу. В этом случае затрачивается $3·|y_{2} — y_{1}|$ энергии. Далее по тексту этот прием будет называться «суперпрыжок».

Нам необходимо проверить какой прием эффективнее. Для этого мы сравниваем сумму затраченной энергии при «обычных» прыжках с первой платформы до третей, с энергией, затраченной при «суперпрыжке» с первой сразу на третью. Этот алгоритм мы рассматриваем для каждой платформы, начиная с $3$ и до последней. Последнее значение, которое мы получим в ходе применения наиболее выгодного приема, и будет являться минимальным количеством энергии.

Параллельно подсчету энергии необходимо нумеровать платформы, на которые мы прыгнули. Опять же, если «суперпрыжок» с первой на третью оказался выгоднее, чем «обычные» прыжки с первой до третей, то третья платформа окажется второй по счету, на которую мы прыгнули. Продолжая эти рассуждения мы подсчитываем нужные нам платформы.

Чтобы вывести список платформ, по которым мы прошли, мы записываем в новый массив номера платформ начиная с последнего значения массива platforms[amount_of_pltf]. Там же, с помощью счетчика считаем общее количество платформ.

Ссылки

e-olymp 9036. Комбинация игральных костей

Задача

Подсчитайте количество способов, которыми можно получить сумму $n$ бросая игральный кубик один или несколько раз. Каждый бросок дает результат между 1 и 6.

Например, если $n = 3$, то имеется 4 способа:
1 + 1 + 1
1 + 2
2 + 1
3

Входные данные

Одно целое число $n$ $(1 \leqslant n \leqslant 10^6)$.

Выходные данные

Выведите количество способов по модулю $10^9+7$.

Тесты

Входные данные  Выходные данные
1 1 1
2 3 4
3 5 16
4 6 32
5 8 123

Код программы

Первый способ (выполняется быстрее, но использует больше памяти)

Второй способ (использует меньше памяти, но выполняется дольше)

 

Решение

Создадим массив на $n+1$ элемент. В который мы сразу запишем количество перестановок для сумм 1,2..,6. Для остальных случаев, когда $n>7$ воспользуемся следующей идеей. Будем вычислять количество перестановок для сумм, начиная с 7 до тех пор, пока не дойдем до заданного нам $n$. Будем делать это по такой формуле $a_{i}=a_{i-1}+a_{i-2}+a_{i-3}+a_{i-4}+a_{i-5}+a_{i-6}$  . Для первых шести сумм вычисляем по этой же формуле, с учетом, что $0 < i-k \; (1 \leqslant k \leqslant 6)$ и добавляя еще 1 перестановку, так как мы можем получить сумму ( $i$ ), подбросив кубик 1 раз. Рассмотрим для $n=7$. Чтобы получить 7 достаточно подбросить кубик ещё один раз, так как мы знаем количество для $n$ от 1 до 6. Если выпадет 1, то остается $a_{6}$ возможных перестановок, если выпадет 2, то остается  $a_{5}$  и так далее. Затем нам требуется просуммировать, так как кубик может выпасть 6 способами, как было сказано ранее. Соответственно для $n=8$ количество комбинаций увеличится на  $a_{7}$ и уменьшится на  $a_{1}$, так как кубик имеет только 6 граней.

Ссылки

Условие задачи на e-olymp

Код программы на ideone

e-olymp 806. Платформы — 3

Задача

В старых играх можно столкнуться с такой ситуацией. Герой прыгает по платформам, висящим в воздухе. Он должен перебраться от одного края экрана до другого. При прыжке с платформы на соседнюю, у героя уходит $|y_{2} — y_{1}|^2$ энергии, где $y_{1}$ и $y_{2}$ — высоты, на которых расположены эти платформы. Кроме того, есть суперприём, позволяющий перескочить через платформу, но на это затрачивается $3|y_{3} -y_{1}|^2$ энергии.

Известны высоты платформ в порядке от левого края до правого. Найдите минимальное количество энергии, достаточное, чтобы добраться с $1$-й платформы до $n$-й (последней).

Входные данные

Первая строка содержит количество платформ $n$ $(2 \leqslant n \leqslant 10^5)$, вторая — $n$ целых чисел, значения которых не превышают по модулю $4000$ — высоты платформ.

Выходные данные

Выведите единственное целое число — искомую величину энергии.

Тесты

Входные данные  Выходные данные
1 4
1 2 3 30
731
2 4
0 1 6 8
40
3 8
1 15 16 23 42 10 84 5
828
4 7
57 54 -55 -34 21 88 -100
55189
5 7
-4000 4000 -4000 4000 -4000 4000 -4000
0

Код программы

Решение

Чтобы решить задачу, мы создадим массив $energy$, где будем хранить минимальную энергию, которую герой потратит для прыжка на очередную $i$-ю платформу. Для этого необходимо для каждой платформы, начиная со второй, рассмотреть три вида прыжка:

  • прыжок с предыдущей $i — 1$ платформы.
  • суперприём, то есть прыжок c $i — 2$ платформы.
  • 3-й вид: суперприём с $i — 1$ платформы на $i + 1$ и прыжок назад на $i$.

«Цены» за обычный прыжок и суперприём мы можем найти из формул данных в условии, с 3-м же сложнее — результатом будет сумма «цены» суперприёма $3(y_{i+1} — y_{i-1})^2$ и «цены» прыжка назад $(y_{i} — y_{i+1})^2$.

Для понимания схемы можно рассмотреть в качестве примера второй тест.
Синим обозначен 3-ий тип. Красными цифрами — весь путь.

второй тест

Каждый из 3-х путей даст своё значение энергии, равное сумме «цены» прыжка на $i$-ю платформу и значения в той, из которой герой совершил прыжок. Наименьшей энергией для этой платформы будет минимум из этих трех значений.
На второй платформе $(i = 1)$ в случае суперприёма мы выходим за границы массива и получаем независимое значение, поэтому эффективнее будет в качестве «цены» выбирать максимум из двух других уже найденных значений. Аналогично на последней  $(i = n — 1)$ и 3-м типе прыжка, максимум будет невыгодным и соответственно не будет выбран как минимум в $energy_{i}$.

Ссылки

Условие задачи на e-olymp
Код программы на ideone

e-olymp 972. Сортировка времени

Задача

Отсортируйте время согласно заданному критерию

Входные данные

Сначала задано число $n\, \left ( 1\leqslant n\leqslant 100 \right )$, а затем n моментов времени. Каждый момент времени задается 3 целыми числами — часы (от 0 до 23), минуты (от 0 до 60) и секунды (от 0 до 60)

Выходные данные

Выведите моменты времени, упорядоченные в порядке неубывания (момент времени также выводится в виде трех чисел, ведущие нули выводить не нужно)

Тесты

Входные данные Выходные данные
1 [latex]\begin{matrix}
4 & & \\
10 &20 &30 \\
7 &30 &00 \\
23&59 &59 \\
13&30 &30
\end{matrix}[/latex]
[latex]\begin{matrix}
7 & 30 &00 \\
10&20 &30 \\
13&30 &30 \\
23& 59 & 59
\end{matrix}[/latex]
2 $\begin{matrix}
6\\
12 &55 &59 \\
8 &33 &34 \\
6 &56 &46 \\
10 &23 &52 \\
3 &20 &00 \\
19 &31 &0\\
10&23&52
\end{matrix}$
$\begin{matrix}
3 &20 &0 \\
6 &56 &46 \\
8 &33 &34 \\
10 &23 &52 \\
12 &55 &59 \\
19 &31 &0
\end{matrix}$

Решение

Создадим 4 массива где мы будем хранить время(отдельно часы, минуты, секунды), а также четвертый в котором мы будем хранить все время в одной удобной для нас единице измерения — секундах. Читаем поток ввода и переводим полученные данные, сравниваем их потом сортируем полученные результаты и выводим ответ.

Ссылки

e-olymp
ideone

e-olymp 972. Сортировка времени

Задача

Отсортируйте время согласно заданному критерию.

Входные данные

Сначала задано число $n$ $\left(1 \leqslant n \leqslant 100 \right),$ а затем $n$ моментов времени. Каждый момент времени задается $3$ целыми числами — часы (от $0$ до $23$), минуты (от $0$ до $60$), и секунды (от $0$ до $60$).

Выходные данные

Выведите моменты времени, упорядоченные в порядке неубывания (момент времени также выводится в виде трех чисел, ведущие нули выводить не нужно).

Тесты

Входные данные Выходные данные

1

4
10 20 30
7 30 00
23 59 59
13 30 30
7 30 0
10 20 30
13 30 30
23 59 59

2

5
12 40 45
23 56 12
7 45 34
8 23 34
2 56 45
2 56 45
7 45 34
8 23 34
12 40 45
23 56 12

3

3
23 56 45
21 45 54
6 45 23
6 45 23
21 45 54
23 56 45

Код 1

Код 2

Решение задачи (код 1)

Для решения задачи переведём в секунды каждый момент времени и введём их в массив d[i]. Далее, в этом массиве проверяем какой элемент больше if (d[i] > d[j]) и упорядочиваем эти элементы в порядке возрастания используя swap().

Решение задачи (код 2)

Для решение задачи вторым способом создадим структуру unsortedtime. Каждый элемент в этой структуре будет соответствовать часу, минуте, секунде. После чего создадим оператор > , в котором будем сравнивать моменты времени. В случае необходимости будем менять их местами, используя функцию swap(). В результате выведем с помощью цикла моменты времени, упорядоченные в порядке неубывания.

Ссылки

  • Условие задачи на e-olymp
  • Код программы (1) на ideone
  • Код программы (2) на ideone

e-olymp 8688. Количество чисел без 8

Задача

Напишите программу, которая определяет количество чисел от $1$ до $n$, в записи которых нет цифры $8$.

Входные данные:
В первой строке задано число $n$ $(1 \le n \le 10^{18})$.

Выходные данные:
Выведите одно число — количество чисел от $1$ до $n$, в записи которых нет цифры $8$.

Тесты

Входные данные Вывод программы
10 9
25833798135522720 4918510377816614
88888888888888 20334926626631

Continue reading

e-olymp 4749. Выручка театра

Задача

В театре [latex]n[/latex] рядов по [latex]m[/latex] мест в каждом. Даны две матрицы — в первой записаны стоимости билетов. Вторая сообщает, какие билеты проданы, а какие — нет ([latex]1[/latex] — соответствующий билет продан, [latex]0[/latex] — не продан).
Определите общую выручку от спектакля.

Входные данные

Сначала записано число [latex]n[/latex], затем число [latex]m[/latex] ([latex]n[/latex], [latex]m \leqslant 500[/latex]). После задана матрица стоимостей билетов ([latex]n[/latex] строк по [latex]m[/latex] чисел, каждое из чисел от [latex]0[/latex] до [latex]10000[/latex]). Далее задана матрица проданных билетов — снова [latex]n[/latex] строк по [latex]m[/latex] чисел.

Выходные данные

Выведите общую выручку от продажи билетов.

Тесты

Входные данные Выходные данные
1 3 3 25
1 2 3
4 5 6
7 8 9
1 0 1
0 1 0
1 0 1
2 2 2 0
1 1
2 2
0 0
0 0
3 4 5 380
15 16 17 18 19
19 18 17 16 15
19 20 21 22 23
23 22 21 20 19
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

Код программы с использованием одномерных массивов

Решение задачи

Описываем целочисленный одномерный массив x [500*500] для хранения матрицы стоимостей билетов. Описываем целочисленные переменные [latex]n[/latex] и [latex]m[/latex] (количество строк и столбцов матрицы) и считываем их. Описываем целочисленную переменную [latex]nm[/latex] (количество мест в зале) и инициализируем ее произведением [latex]n \cdot m[/latex]. Цикл инициализирует [latex]nm[/latex] элементов массива [latex]x[/latex]. Описываем целочисленную переменную [latex]k[/latex], которая принимает значения [latex]0[/latex] или [latex]1[/latex] (билет не продан или продан), и целочисленную переменную [latex]v[/latex] — стоимость проданных билетов ([latex]v[/latex] имеет тип long long int, так как максимальное значение, которое она может принять, составляет [latex]500 \cdot 500 \cdot 10000=2500000000[/latex]). Цикл считывает значения [latex]k[/latex] и увеличивает [latex]v[/latex] на k*x[i].

Код программы с использованием многомерных массивов

Решение задачи

По условию заданы количество строк [latex]n[/latex] и количество столбцов [latex]m[/latex] матрицы стоимости театральных билетов ( [latex] n,m\leqslant 500[/latex], каждое из чисел от [latex]0[/latex] до [latex]10000[/latex] ). Описываем целочисленную матрицу x[500][500]. Объявляем целочисленные переменные [latex]n[/latex] и [latex]m[/latex] и вводим их значения с клавиатуры. Считываем матрицу x. Объявляем переменную unsigned long long v = 0 — стоимость проданных билетов. Целочисленная переменная [latex]p = 1[/latex], если билет на ( [latex]i,j[/latex] )-е место продан, и [latex]p = 0[/latex] — в противном случае. Во вложенных циклах считываем значение [latex]p[/latex] из матрицы проданных билетов. Проверяем [latex]p[/latex] на положительность и увеличиваем [latex]v[/latex] на стоимость билета на ( [latex]i,j[/latex] )-е место.

Ссылки

e-olymp
ideone (код с одномерными массивами)
ideone (код с многомерными массивами)

e-olymp 8530. Печать матрицы

Задача

Условие

Задана матрица $n \cdot n$ — назовем ее $[1..n] \cdot [1..n]$ массивом. Для заданных $r$ и $c$ следует вывести $[1..r] \cdot [1..c]$ массив ($r$ строк и $c$ столбцов исходного массива).

Входные данные

Первая строка содержит число $n (1 \leq n \leq 100)$. Следующие строки содержат матрицу $n \cdot n$. Последняя строка содержит два числа $r$ и $c$ $(1 \leq r, c \leq n)$. Все числа в матрице не превышают по модулю $100$.

Выходные данные

Выведите матрицу $r \cdot c$.

Тесты

Входные данные Выходные данные
1 4
1 2 3 4
5 6 7 8
9 1 2 3
4 5 6 7
3 2
1 2
5 6
9 1
2 5
18 25 34 44 -43
54 65 75 85 -32
95 15 25 35 -3
-4 15 -6 37 0
44 43 23 3 -12
4 3
18 25 34
54 65 75
95 15 25
-4 15 -6
3 2
0 -1
23 69
1 1
0
4 3
1 2 3
-4 -5 -6
7 8 9
3 1
1
-4
7

Решение

Для решения данной задачи необходимо ввести в массив все имеющиеся данные и вывести необходимые, соответственно заданным параметрам. Можно использовать как одномерные массивы, так и двухмерные.
В реализации с одномерными вводим все данные в массив $n \cdot n$, а затем выводим, используя вложенные циклы. Цикл проходит от $0$ до $r$ и от $(j \cdot n)$ — первого элемент необходимой строки до $(c + j \cdot n)$ — последнего элемента. В реализации с двумерными массивами заводим все данные в один массив и после выводим необходимые.

Код программы №1

Код программы №2

Ссылки

e-olymp 7368. Средний балл для фигуристов

Задача взята с сайта e-olymp

Задача

Спортсменам-фигуристам [latex]n[/latex] судей выставляют оценки. Технический работник соревнований изымает все максимальные и все минимальные оценки, а для остальных оценок вычисляет среднее арифметическое значение. Этот результат считается баллом, полученным спортсменом. Найти такой балл для каждого спортсмена.

Входные данные

В первой строке находятся два целых числа: количество судей [latex]n[/latex] и количество спортсменов [latex]m[/latex]. В следующих [latex]m[/latex] строках находятся [latex]n[/latex] целых чисел – оценки всех судей[latex]\left( 0 \lt n \leqslant 10, 0 \lt m \leqslant 100 \right)[/latex] для каждого из фигуристов.

Выходные данные

В одной строке вывести m чисел с точностью до двух десятичных знаков — балл каждого спортсмена.

Тесты

#   ВХОДНЫЕ ДАННЫЕ ВЫХОДНЫЕ ДАННЫЕ
1 5 4
7 8 9 8 10
6 5 5 4 7
9 9 10 7 7
7 7 10 9 8
8.33 5.33 9.00 8.50
2 3 4
1 2 3
3 5 2
7 1 6
9 8 3
2.00 3.00 6.00 8.00
3 10 2
1 2 3 4 5 6 7 8 9 10
1 1 1 2 2 2 3 3 3 4
5.50 2.50

Код программы (Потоковая обработка)

Решение

Читая каждую оценку:

  1. Добавляем оценку к общей сумме;
  2. Если введенная оценка равна минимальной, то добавляем ее к сумме минимальных и увеличиваем счётчик количества минимальных.
  3. Если введенная оценка меньше минимальной, то минимальной становится введённая оценка. Счетчик количества минимальных равен [latex]1.[/latex] Сумма минимальных равна введённой оценке.
  4. Если введенная оценка равна максимальной, то добавляем ее к сумме максимальных и увеличиваем счётчик количества максимальных.
  5. Если введенная оценка больше максимальной, то максимальной становится введённая оценка. Счетчик количества максимальных равен [latex]1.[/latex] Сумма максимальных равна введённой оценке.

Тогда после введения всех [latex]n[/latex] оценок имеем:

  •  [latex]sumMax[/latex] — сумма максимальных оценок.
  •  [latex]sumMin[/latex] — сумма минимальных оценок.
  •  [latex]countMax[/latex] — количество максимальных оценок.
  •  [latex]countMin[/latex] — количество минимальных оценок.
  •  [latex]sumGl[/latex] — общая сумма оценок.

Для нахождения среднего арифметического значения оценок, соответствующего условию будем применять формулу:  [latex]S_с = \frac{sumGL-sumMin-sumMax}{n-countMin-countMax}[/latex]

Код программы (Массивы)

Решение

Делаем без счетчиков, запоминаем все элементы. Находим минимум и максимум, дальше проходим по всем оценкам и, если она не минимальная и не максимальная, добавляем к сумме и увеличиваем количество оценок, которые учитываются для среднего значения. В конце выводим среднее значение с двумя знаками после запятой.

Ссылки

Условие задачи на e-olymp

Код программы на ideone (Потоковая обработка)

Код программы на ideone (Массивы)

e-olymp 458. Черно-белая графика

Задача

Одна из базовых задач компьютерной графики – обработка черно-белых изображений. Изображения можно представить в виде прямоугольников шириной $w$ и высотой $h,$ разбитых на $w × h$ единичных квадратов, каждый из которых имеет либо белый, либо черный цвет. Такие единичные квадраты называются пикселами. В памяти компьютера сами изображения хранятся в виде прямоугольных таблиц, содержащих нули и единицы.

Во многих областях очень часто возникает задача комбинации изображений. Одним из простейших методов комбинации, который используется при работе с черно-белыми изображениями, является попиксельное применение некоторой логической операции. Это означает, что значение пиксела результата получается применением этой логической операции к соответствующим пикселам аргументов. Логическая операция от двух аргументов обычно задается таблицей истинности, которая содержит значения операции для всех возможных комбинаций аргументов. Например, для операции «ИЛИ» эта таблица выглядит так.

Напишите программу, которая вычислит результат попиксельного применения заданной логической операции к двум черно-белым изображениям одинакового размера.

Входные данные

Первая строка содержит два целых числа $w$ и $h$ $(1 \leq w, h \leq 100).$ Последующие $h$ строк описывают первое изображение и каждая из этих строк содержит $w$ символов, каждый из которых равен нулю или единице. Далее следует описание второго изображения в аналогичном формате. Последняя строка содержит описание логической операции в виде четырех чисел, каждое из которых – ноль или единица. Первое из них есть результат применения логической операции в случае, если оба аргумента нули, второе – результат в случае, если первый аргумент ноль, второй единица, третье – результат в случае если первый аргумент единица, второй ноль, а четвертый – в случае, если оба аргумента единицы.

Выходные данные

Вывести результат применения заданной логической операции к изображениям в том же формате, в котором изображения заданы во входных данных.

Тесты

Входные данные Выходные данные
 1 5 3
01000
11110
01000
10110
00010
10110
0110
11110
11100
11110
2 2 3
010
111
000
101
1010
11
10
10
3 4 4
1111
0101
0000
1110
0011
0101
0111
1111
0011
1111
0101
0000
1110
4 3 6
100011
000111
000000
111011
001100
010101
1000
000
100
110
000
101
010

Код программы 1

( использован одномерный массив)

Код программы 2

(использован двумерный массив)

Решение

Объявляем два булевых динамических массива под две пиксельные таблицы и один статический для таблицы истинности, вводим входные данные. Затем поочерёдно сравниваем соответствующие элементы массивов с помощью функции my_operation, которая принимает две переменные a и b булевского типа и булев массив res с таблицей истинности, и возвращает соответствующее значение из таблицы для комбинации значений a и b. Результат сравнения выводим.

Ссылки

Анаграммы

Анаграммы

Игорю стало интересно какое количество перестановок букв его фамилии существует. Для этого он выписал на листке бумаге все буквы своей фамилии по алфавиту и начал создавать новые перестановки этих букву в лексикографическом порядке, записывая их на листок.

После того как он закончил выписывать все перестановки Игорь устал и пошел учиться. Он взял словарь и начал учить новые слова. Через некоторое время Игорь заметил что некоторые из слов в словаре совпадают с записанными им перестановками на листке и задался вопросом, — а какие можно получить слова переставляя буквы из других в словаре.

Игоря будут интересовать только слова которые записаны в словаре, так как других он не знает.

Подумав несколько ночей у него получилось написать программу которая находит слово анаграмму в словаре к другому — данному. Но перед ним встал новый вопрос, — а какое слово имеет наибольшее количество анаграмм в заданном словаре.

Его программа работала слишком долго, поэтому он попросил вас написать новую которая справилась бы с этой задачей.

Входные данные

Задан словарь английских слов. Каждое слово в новой строке. Длинна слова не более $255$ символов. Количество слов любое.

Выходные данные

Вывести все слова что имеют максимальное количество анаграмм в нем.

Решение

Прочитаем словарь. Запишем в структуру pair строку с исходным словом в first и отсортированную в second. Анаграммами будут являться слова с одинаковыми second строками. Так как они будут состоять из одних и тех же букв, которые выстроены в одинаковом порядке. Отсортируем множество слов из словаря по second. Таким образом все слова анаграммы будут находиться рядом.

Теперь пройдемся по словарю и будем проверять соседние элементы. Если они равны, то мы будем увеличивать счетчик анаграмм, если же нет, то мы сравним максимальное количество анаграмм, найденное ранее, с текущим значением счетчика. Если они равны, то добавим индекс последнего слова анаграммы в массив индексов, если же больше, то мы очистим массив индексов и добавим туда индекс последнего слова анаграммы. В любом случае, при не равенстве соседних строк сбрасываем счетчик и продолжаем.

На выходе получим массив индексов слов у которых существует максимальное количество анаграмм, в данном словаре. Выведем эти слова и все анаграммы к ним в исходном варианте. Для этого нам и нужна строка  first.

Тесты

Ввод Вывод
 

1

 

2500 слов английского языка

trace react crate

dear dare read

post stop spot

Код

Код на ideone

e-olymp 54. Мурзик

Задача

Весна… Прекрасное время! Все, казалось бы оживает и двигается, расцветает, начинается новый проход цикла жизни. И общеизвестный Мурзик не является исключением! Но если он чрезвычайно активен днем – то точно так же крепко спит ночью. Причем несчастный хищник видит преимущественно кошмары…

Одной ночью ему приснилось, что он судья на математических соревнованиях крыс (да, в наш век цифровых технологий даже крысы не остаются за гранью научно-технического прогресса). Соревнования проводятся среди [latex]N[/latex] команд по [latex]K[/latex] крыс в каждой. Соревнования проводятся в [latex]К[/latex] раундов, в каждом из которых представитель команды называет число. Побеждает та команда, у которой произведение всех чисел наибольшее. Почему крысы не называют каждый раз максимально возможное число? На то они и крысы, что в отличии от Мурзика, обделены интеллектом. Но и Мурзик понимает, что сам подсчитать результат не сможет из-за недостачи математических способностей и поэтому просит вашей помощи.

Входные данные

Первая строка содержит два целых числа [latex]N[/latex] и [latex]K[/latex] [latex](0 < N ≤ 20, 0 < K ≤ 100000)[/latex]. Следующие [latex]K[/latex] строк содержат по N чисел, которые называют представители команд. Причем крысы, как представители образованного вида, знают только 32-битовые знаковые числа.

Выходные данные

Номер команды, выигравшей соревнования. Если несколько команд имеют одинаковые результаты, то побеждает та, у которой больше номер.

Тесты

# Входные данные Выходные данные
1 3 3
20 10 30
15 20 20
30 30 20
3
2 3 3
20 -10 -30
15 25 20
30 -30 20
1
1 3 3
0 -10 -30
15 25 20
30 -30 20
2

Код программы

Решение задачи

Произведение результатов крыс может быть очень большим числом. Поэтому можно сравнивать их по знаку, если же по знаку они равны, то можно сравнивать не сами числа, а логарифмы от чисел. Создаем структуру, которая реализует эту идею.

Ссылки

Ссылка на e-olymp
Ссылка на ideone

e-olymp 1482. Умножение матриц

Задача

Пусть даны две прямоугольные матрицы $A$ и $B$ размерности $m \times n$ и $n \times q$ соответственно:
$$A = \begin{bmatrix} a_{11} & a_{12} & \ldots & a_{1n} \\ a_{21} & a_{22} & \ldots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \ldots & a_{mn} \end{bmatrix} \; , \; B = \begin{bmatrix} b_{11} & b_{12} & \ldots & b_{1q} \\ b_{21} & b_{22} & \ldots & b_{2q} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \ldots & b_{nq} \end{bmatrix} .$$
Тогда матрица $C$ размерностью $m \times q$ называется их произведением:
$$C = \begin{bmatrix} c_{11} & c_{12} & \ldots & c_{1q} \\ c_{21} & c_{22} & \ldots & c_{2q} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m1} & c_{m2} & \ldots & c_{mq} \end{bmatrix} ,$$
где: $$c_{i,j} = \sum_{r=1}^{n} a_{i,r}b_{r,j} \; \left(i = 1, 2, \ldots m; j = 1, 2, \ldots q\right).$$
Операция умножения двух матриц выполнима только в том случае, если число столбцов в первом сомножителе равно числу строк во втором; в этом случае говорят, что форма матриц согласована.

Задано две матрицы $A$ и $B$. Найти их произведение.

Входные данные

В первой строке задано $2$ натуральных числа $n_a$ и $m_a$ – размерность матрицы $A$. В последующих $n_a$ строках задано по $m_a$ чисел – элементы $a_{ij}$ матрицы $A$. В $\left(n_a + 2\right)$-й строке задано $2$ натуральных числа $n_b$ и $m_b$ – размерность матрицы $B$. В последующих $n_b$ строках задано по $m_b$ чисел – элементы $b_{ij}$ матрицы $B$. Размерность матриц не превышает $100 \times 100$, все элементы матриц целые числа, не превышающие по модулю $100$.

Выходные данные

В первой строке вывести размерность итоговой матрицы $C$: $n_с$ и $m_c$. В последующих $n_с$ строках вывести через пробел по $m_c$ чисел – соответствующие элементы $c_{ij}$ матрицы $C$. Если умножать матрицы нельзя — в первой и единственной строке вывести число $\; -1$.

Тесты

Входные данные Выходные данные
2 3
1 3 4
5 -2 3
3 3
1 3 2
2 1 3
0 -1 1
2 3
7 2 15
1 10 7
3 3
1 5 3
2 6 1
7 -1 -3
3 2
3 6
-1 1
3 1
3 2
7 14
3 19
13 38
4 4
4 8 -18 16
3 7 14 -42
2 1 1 7
4 9 5 -2
4 4
1 0 0 0
0 1 0 0
0 0 1 0
4 4
4 8 -18 16
3 7 14 -42
2 1 1 7
4 9 5 -2
3 3
5 7 -1
8 9 3
0 -6 17
2 3
7 -15 1
8 8 2
-1
2 3
57 -49 31
89 11 -37
3 1
19
-19
0
2 1
2014
1482

Код программы

 

Решение

Для начала, считываем данные матрицы $A$ из входного потока и записываем их в двумерный динамический массив. Далее, получив данные о размерности второй матрицы, мы можем определить, выполнима ли операция умножения, и если нет, то прервать выполнение программы. Если операция умножения данных матриц выполнима, то считываем и записываем данные второй матрицы, после чего, по приведённой выше формуле вычисляем произведение матриц $C = A \times B.$ Наконец, выводим полученную матрицу $C.$

Ссылки

Условие задачи на e-olymp
Код задачи на ideone
Умножение матриц на Wikipedia

e-olymp 2669. Поворот

Поворот

Дан массив [latex]n[/latex] × [latex]m[/latex]. Требуется повернуть его по часовой стрелке на [latex]90[/latex] градусов.

Входные данные

В первой строке даны натуральные числа [latex]n[/latex] и [latex]m[/latex] [latex](1 ≤ n, m ≤ 50)[/latex]. На следующих [latex]n[/latex] строках записано по [latex]m[/latex] неотрицательных чисел, не превышающих [latex]109[/latex] — сам массив.

Выходные данные

Выведите перевернутый массив в формате входных данных.

Тесты

# ВХОДНЫЕ ДАННЫЕ ВЫХОДНЫЕ ДАННЫЕ
1 2 2

1 2

3 4

2 2

3 1

4 2

2 3 3

1 2 3

4 5 6

7 8 9

3 3

4 7 1

8 5 2

9 6 3

3 3 4

4 5 7 8

3 6 8 7

2 2 4 5

4 3

2 3 4

2 6 5

4 8 7

5 7 8

4 1 2

5 4

2 1

5

4

5 1 1

2

1 1

2

 

Решение задачи:

Алгоритм решения данной задачи состоит в том, чтоб при выводе матрицы, начать выводить ее элементы не по строкам, а по столбцам, снизу вверх, начиная с первого столбца (левого нижнего угла матрицы).

e-olymp 930. Номер мобильного телефона

Задача

Задан номер мобильного телефона. Определить, какие цифры отсутствуют в этом номере.

Входные данные

В единственной строке задан номер мобильного телефона.

Выходные данные

В первой строке вывести количество отсутствующих в номере цифр. Во второй строке в порядке возрастания вывести отсутствующие цифры, разделенные пробелом.

Тесты

Входные данные Выходные данные
0631562976 2
4 8
2139087 3
4 5 6
1111111111 9
0 2 3 4 5 6 7 8 9
7 9
0 1 2 3 4 5 6 8 9
4848 8
0 1 2 3 5 6 7 9
0921234567 1
8
6723545 4
0 1 8 9
9867453210 0
 

Код программы

Решение

Объявим массив на $10$ элементов, в котором будем хранить количество вхождений каждой цифры в номер телефона. Далее, посимвольно читаем входной поток и увеличиваем соответствующие каждой цифре элементы массива на $1$. После этого, находим количество нулевых элементов массива — это будет количество цифр, которые отсутствуют в номере. Наконец, выводим индексы нулевых элементов массива.

Ссылки

Условия задачи на e-olymp
Код задачи на ideone