e-olymp 8963. Наименьшие влево

Условие

Задан массив из [latex]n[/latex] целых чисел. Переместить все минимальные элементы в начало массива, не меняя порядок других.

Входные данные

В первой строке записано натуральное число [latex]n[/latex]. В следующей строке записаны [latex]n[/latex] целых чисел. Все числа по модулю не превышают [latex]100[/latex].

Выходные данные

Выведите элементы обновленного массива.

Тесты

Ввод Вывод
1 7
6 -3 -7 4 -7 -4 5
-7 -7 6 -3 4 -4 5
2 2
100 -100
-100 100
3 6
-2 -2 7 3 99 -2
-2 -2 -2 7 3 99
4 5
1 1 1 1 1
1 1 1 1 1

Решение

Вместо обычных массивов будем использовать векторы, чтобы было удобнее добавлять элементы в конец. Минимальный элемент можно найти с помощью простого цикла: если какой-либо элемент вектора меньше min, то min присваивается значение этого элемента, и так пока не найдено наименьшее число. Подсчитаем, сколько раз оно встречается в векторе. Столько же раз его нужно добавить в новый вектор. Наконец, переносим в v2 все оставшиеся элементы, не равные min.

Код программы

Ссылки

решение на E-olymp
код на ideone

e-olymp 8666. Коровий котильон

Задача

В коровьем котильоне — причудливом танце весны — участвуют коровы (обозначаются $ «\gt»$) и быки (обозначаются $ «\lt»$), они кланяются друг другу во время танца. Схематически обозначим пару кланяющихся животных следующим образом: $ «\gt \lt»$. Иногда вторая пара скота может находиться между кланяющейся парой: $ «\gt \gt \lt \lt»$.

Иногда и большее количество коров и быков встречается на танцевальной площадке: $ «\gt \gt \lt \lt \gt \lt»$ (имеется вторая пара кланяющихся коров справа). Сложные аранжировки могут быть совершенно легальными танцевальными образованиями:

Фермер Джон замечает, что бездомная корова иногда пробирается в группу и разбалансирует ее: $ «\gt \gt \lt \lt \lt \lt»$. Это строго запрещено; Фермер Джон хочет наказать нарушителей.

Фермер Джон скопировал данные о том, как $500$ коров участвуют в танцевальной линии, и задался вопросом, правильно ли уравновешена танцевальная линия (то есть весь скот может быть спарен как минимум одним способом чтобы правильно кланяться друг другу). Он скопировал только направление, в котором кланялась каждая корова, без каких-либо лишних пробелов, чтобы можно было определить, какая корова какому быку кланяется. Строки похожи на пример из предыдущего абзаца: «>><&lt». Фермер Джон хочет чтобы Вы написали программу, определяющую правильность танцевальной линии.

Фермер Джон имеет $n$ записей танца $P_{i}$ состоящих из символов $ «\gt»$ и $ «\lt»$;’ различной длины $K_{i} (1 \leqslant K_{i} \leqslant 200)$. Выведите «legal» для тех строк, которые содержат правильные пары кланяющихся коров и «illegal» иначе.

Входные данные

Первая строка содержит одно число $n$ $(1 \leqslant n \leqslant 1000)$. Каждая из следующих $n$ строк содержит число и строку из $K$ символов $ «\gt»$ и $ «\lt»$: $K_{i}$и $P_{i}$.

Выходные данные

Выведите в каждой строке «legal» или «illegal» в зависимости от того, содержит ли соответствующая входная строка допустимую конфигурацию.

Тесты

Входные данные Выходные данные
1 2
6 >><<><
4 ><<>
legal

illegal

2 3
8 <>><><><
6 ><>><<
9 >><>><<><
illegal
legal
illegal
3 5
4 ><><
10 >>><<>><<<
8 >><<<>><
3 >><
12 ><>><>>><<<<
legal
legal
illegal
illegal
legal

Код

Решение

Пара начинается с коровы и каждой из них должен соответствовать один бык, стоящий после неё. Для того, чтобы проверить правильность танцевальной линии, будем фиксировать количество встречающихся коров, а при встрече быка это число уменьшать. Отрицательное значение показывает на наличие быка без пары; в таком случае баланса уже не будет и проверять дальше смысла нет.  В случае конечного результата $0$, в линии соблюден баланс: у каждого есть своя пара.

Ссылки

Переставить соседние

Задача

Задан массив из $n$ целых чисел. Переставьте соседние элементы массива ($a_{0}$ с $a_{1}$, $a_{2}$ с $a_{3}$ и так далее). Если элементов нечетное количество, то последний элемент следует оставить на своем месте.

Входные данные

В первой строке записано число $n$. В следующей строке записано $n$ целых чисел. Все числа по модулю не превышают $100$.

Выходные данные

Вывести обновленный массив.

Тесты

Входные данные Выходные данные
7
3 5 -7 7 5 -9 -4
5 3 7 -7 -9 5 -4
8
-9 81 27 -38 2 6 -56 -21
81 -9 -38 27 6 2 -21 -56
2
25 -76
-76 25
3
55 44 33
44 55 33
1
99
99

Код

Решение

Для перемены местами соседних элементов массива, заведем переменную, в которой и будет происходить обмен. Каждый нечетный по счету элемент меняем местами с предыдущим. Например, $arr[1]$ с $arr[0]$, $arr[3]$ с $arr[2]$ и так далее до конца массива. При этом совершенно не важно, четное кол-во элементов или нечетное.

Ссылки

Условие задачи на E-Olymp
Код задачи на Ideone

e-olymp 7847. Кількість різних елементів

Задача

Дано масив з N цілих чисел. Визначте, скільки в цьому масиві різних елементів,

Вхідні дані

В першому рядку записано число N. В наступному рядку записано N цілих чисел. Всі числа за модулем не перевищують 100.

Вихідні дані

Кількість різних елементів в масиві.

Тести

 

Вхідні дані Вихідні дані
1. 7
3 5 -7 7 5 -9 -4
6
2. 5
1 25 59 75 100
5
3. 6
1 2 3 1 2 4
4

Код

Решение

Ставим отметку числу как будто видим его впервые.
Далее задача пройти по всем предыдущим числам и проверить не встретится ли такое же число.
Если встретится, то отметку снимаем, а пройдя по всем предыдущим числам так и не встретив числа равного текущему, значит «видим его впервые» и отметка поставлена справедливо.
Считаем количество отметок.

Ссылки

 

 

 

 

e-olymp 2098. Переворачиватель

Условие

Заданы [latex]n[/latex] чисел. Выведите их в обратном порядке.

Входные данные

Сначала задано число [latex]n[/latex] ([latex]0 \lt n \lt 100[/latex]), за ним идут [latex]n[/latex] целых чисел.

Выходные данные

Выведите заданные [latex]n[/latex] чисел в обратном порядке.

Тесты

Ввод Вывод
1 7
2 4 1 3 5 3 1
1 3 5 3 1 4 2
2 1
5
5
3 10
1 1 1 9999 5 -1 7 3 0 9
9 0 3 7 -1 5 9999 1 1 1

Код программы

Решение

Введём переменную [latex]n[/latex], затем создадим массив из [latex]n[/latex] элементов. С помощью цикла for от [latex]0[/latex] до [latex]n[/latex] запишем в него числа. Теперь с помощью другого цикла от [latex]n-1[/latex] до [latex]-1[/latex] выводим их в обратном порядке.

e-olymp 6388. Муха Фон-Неймана

Задача

Следующая задача была предложена Джону Фон-Нейману:

Два велосипедиста [latex]a[/latex] и [latex]b[/latex] начинают поездку навстречу друг другу в одно и то же время с мест, находящихся на расстоянии [latex]250[/latex] друг от друга, [latex]a[/latex] движется со скоростью [latex]10[/latex] миль в час, [latex]b[/latex] движется со скоростью [latex]15[/latex] миль в час. В это же время муха взлетает с колеса велосипедиста [latex]a[/latex] и движется навстречу к [latex]b[/latex], затем разворачивается и летит обратно. Пока велосипедисты приближаются друг к другу, муха продолжает летать между ними, касаясь каждый раз переднего колеса велосипедистов, пока, наконец, не будет раздавлена колесами встретившихся велосипедов. Так как муха летает быстрее каждого из велосипедистов, она совершает бесконечное количество полетов, при этом пройдя конечное расстояние (бесконечный ряд сходится). Какое расстояние пролетела муха?

Фон-Нейман немедленно вычислил бесконечный ряд (в уме!), и получил верный ответ: [latex]200[/latex] миль.

Вам следует написать программу, которая решает более общую задачу, с различными начальными расстояниями и скоростями.

Входные данные

Первая строка содержит количество тестов [latex]p (1 \leqslant p \leqslant 1000)[/latex].

Каждый тест состоит из одной строки, содержащей пять чисел: номер теста [latex]n[/latex] и четыре действительных числа: начальное расстояние между велосипедистами [latex]d (10 \leqslant d \leqslant 1000)[/latex], скорость первого велосипедиста [latex]a (1 \leqslant a \leqslant 30)[/latex] в милях в час, скорость второго велосипедиста [latex]b (1 \leqslant b \leqslant 30)[/latex] в милях в час и скорость мухи [latex]f (a \leqslant b < f \leqslant 50)[/latex] в милях в час.

Выходные данные

Для каждого теста вывести в отдельной строке номер теста, пробел, и количество миль, которое пролетела муха (бесконечная сумма расстояний, описанных в условии) с точностью до двух десятичных знаков.

Тесты

# ВХОДНЫЕ ДАННЫЕ ВЫХОДНЫЕ ДАННЫЕ
1 5
1 250 10 15 20
2 10.7 3.5 4.7 5.5
3 523.7 15.3 20.7 33.3
4 1000 30 30 50
5 500 15 15 25
1 200.00
2 7.18
3 484.42
4 833.33
5 416.67

Код программы

Решение задачи

Безусловно, многие ознакомленные с курсом математического анализа люди (или же юные подражатели Фон-Неймана) после ознакомления с условием задачи мгновенно подумали о сумме сходящегося бесконечного ряда. Однако, если абстрагироваться от пестрых намеков содержания и попробовать мыслить менее глобально, можно прийти к куда более простому варианту решения. На самом деле под витиеватой формулировкой таится обыкновенная задача на движение с некоторым дополнительным фактором!

Согласно условию, велосипедисты [latex]a[/latex] и [latex]b[/latex] двигаются навстречу друг другу, а следовательно их скорость сближения (общая скорость) будет равна сумме скоростей каждого из велосипедистов: [latex]a + b[/latex]. По знакомой из школьного курса математики формуле [latex]S = V \times t[/latex] (тогда [latex]t = \frac { S }{ V }[/latex]), разделив расстояние между велосипедистами [latex]d[/latex] на их скорость сближения, найдем время [latex]t[/latex], спустя которое велосипедисты встретятся: [latex]t = d / (a + b)[/latex]. Муха, перелетающая с одного колеса на другое со скоростью [latex]f[/latex] достигнет момента своей погибели ровно тогда же, когда встретятся велосипедисты, то есть спустя то же время [latex]t[/latex]. Тогда, умножив скорость мухи на это время, то есть [latex]f\times t[/latex], получим расстояние [latex]flyDist[/latex], преодолённое мухой.
Для корректной реализации кода задачи сначала считываем количество тестов [latex]p[/latex], затем создаём цикл, внутри которого считываем все необходимые для вышеописанных действий переменные, производим нужные вычисления и, с помощью функции cout.precision и замечания fixed, выводим номер теста и его результат с точностью до двух десятичных знаков.

Конечно, данную задачу можно решить и используя сумму ряда, однако этот способ получился бы намного более сложным и громоздким. Поэтому такое удивительное высказывание, скорее всего, было лишь тонкой шуткой остроумного Фон-Неймана. Сам же он мог решить задачу в уме простым путем, описанным выше, но назвать более сложный, чтобы удивить современников и последователей.

e-olymp 8546. Найдите сумму

Задача

По заданному натуральному числу $n$ вычислите сумму

$\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+ … +\frac{1}{n\cdot(n+1)}$

Входные данные

Одно натуральное число $n$ ($n$ $⩽$ $1000$).

Выходные данные

Выведите сумму с $6$ десятичными знаками.

Тесты

Входные данные Выходные данные
1 1 0.500000
2 5 0.833333
3 12 0.923077

Код программы

Решение

Для вычисления данной суммы необходимо сложить $n$ слагаемых вида

$\frac{1}{i \cdot (i + 1)}$

начиная с $i = 1$ и с шагом в единицу до $i = n$.

Ссылки

Условие задачи на e-olymp

Код программы на ideone

e-olymp 8680. Чётные соседи

Условие задачи

Задана последовательность целых чисел. Подсчитать количество элементов, у которых чётные соседи.

Входные данные

В первой строке задано количество элементов последовательности $n$ $(n \leqslant 100)$. Во второй строке заданы сами элементы, значение каждого из которых по модулю не превышает $100$.

Выходные данные

Вывести в одной строке количество элементов последовательности с чётными соседями.

Тесты

Входные данные Выходные данные
1 6
1 2 3 4 5 6
2
2 9
3 6 3 5 2 9 1 2 5
0
3 3
2 1 2
1
4 6
13 24 54 66 44 77
2
5 4
100 224 666 222
2

Программный код

Решение

Идея решения задачи состоит в том, чтобы создать три переменные: $prev$ (предыдущий), $pres$ (настоящий, текущий) и $fut$ (будущий). Затем в цикле мы перезаписываем эти переменные т.е.: настоящий становится прошлым, будущий настоящим, а новый будущий мы читаем из cin. Так же, в ходе решения задачи обнаружилась проблема с чтением количества элементов. Допустим, если мы записали, что $n=6$, а дальше ввели $10$ элементов, то количество элементов с чётными соседями будет считаться для $10$ элементов. Чтобы избежать этого мы ограничиваем количество читаемых элементов с помощью счётчика i++ и цикла while.

Ссылки

e-olymp 8283. Музыка

Задача

Малыши и малышки очень любили музыку, а Гусля был замечательный музыкант. У него были разные музыкальные инструменты, и он часто играл на них. Их было много, поэтому он развесил их на стенах своей комнаты. Инструмент, расположенный справа от входной двери имел номер $1$, дальше они нумеровались по кругу, а последний инструмент с номером $n$ висел слева от этой двери.

Малыши часто просили его научить играть на каком-нибудь инструменте. Гусля не отказывал, но сначала предлагал взять инструмент с первым номером, а если ученику хотелось играть на другом, то он выбирал шестой следующий по кругу и так далее. Напишите программу, которая определяла номер попытки, с которой ученик мог получить желаемый инструмент с номером $k$.

Например, если количество инструментов $n = 11$, то последовательность будет следующей: $(1) 2 3 4 5 6 (7) 8 9 10 11 1 (2) 3 4 5 6 7 (8) 9 10 11 1 2 (3) 4 5$ …, то есть при $k = 3$ инструмент с номером $3$ можно было бы получить с пятой попытки.

Входные данные

Два натуральных числа $n$ и $k$ $(1 \leqslant k \leqslant n \leqslant 100)$.

Выходные данные

Вывести номер попытки, в который «выпадал» инструмент с номером $k$. Если это никогда не происходило, следует вывести $0$.

Тесты

Входные данные Выходные данные
1 11 3 5
2 6 2 0
3 13 13 3
4 9 8 0
5 5 5 5

Код

Решение

Для решения задачи нам необходимо рассмотреть ряд натуральных чисел, начиная с единицы и прибавляя каждый раз $6$. С помощью операции деления с остатком мы можем реализовать алгоритм нахождения номера музыкального инструмента. Однако логика решения изменяется в зависимости от введенных пользователем данных. Имеется два случая:

  1. Если пользователь вводит разные числа.
  2. Если пользователь вводит одинаковые числа.

В первом случае мы рассматриваем две ситуации:
1) если пользователь вводит количество инструментов $6$, то единственным решением будет инструмент под номером $1$, так как Гусля выбирает инструменты через $6$ штук по кругу;
2) если количество инструментов не равно $6$ то мы реализовываем алгоритм нахождения номера путем деления с остатком, а именно: если текущее число при делении на количество инструментов не дает в остатке искомый номер, мы прибавляем $1$ к числу попыток, а число увеличиваем на $6$, в противном случае мы нашли число попыток.
Еще здесь, так же, как и во втором случае, есть подводный камень: если мы уже сделали какое-то количество попыток и текущее число при делении на количество инструментов дает в остатке $1$, мы никогда не попадем на нужный нам номер инструмента.

Во втором случае мы также рассматриваем две ситуации:
1) если количество инструментов делится нацело на $2$, то нам никогда не выпадет нужный инструмент;
2) если текущее число при делении на количество инструментов не дает в остатке $0$, мы прибавляем $1$ к числу попыток, а число увеличиваем на $6$, в противном случае ответ найден.
Также не забываем про подводный камень, указанный выше.

Ссылки

  • Условие задачи на e-olymp
  • Код программы на ideone.com
  • Засчитанное решение на e-olymp

e-olymp 5041. Синтаксический анализ вещественных чисел

Задача

Напишите программу, которая считывает строку и проверяет, содержит ли она действительное число. Действительное число может содержать десятичную точку или показатель степени (начинающийся с $ e $ или $ E $), или и то и то одновременно. Также число может содержать обыкновенный набор десятичных цифр. Если число содержит десятичную точку, то должна присутствовать хотя бы одна цифра с каждой стороны точки. Перед числом или экспонентой может находиться плюс или минус (или одновременно и там и там) (без пробелов после знака). Экспонентой является целое число (не содержит десятичной запятой). Пробелы могут присутствовать до или после числа, но не внутри него. Обратите внимание, что границ диапазона входных чисел не существует, но для простоты будем предполагать, что входные строки содержат не более $ 1000 $ символов.

Входные данные

Первая строка содержит количество тестов $ t $. Дальше следует $ t $ строк, каждая из которых содержит одно число.

Выходные данные

Вывести $ t $ строк, каждая из которых содержит слово $ LEGAL $ или $ ILLEGAL $.

Тесты

Входные данные Выходные данные
1. 2
1.5e+2
3.
LEGAL
ILLEGAL
2. 4
752.45e+24
0.762e.
-0.355.6432e
LEGAL
ILLEGAL
ILLEGAL
3. 1
-652.32e+45
LEGAL
4. 3
542.512e+3
123.456E+42
123.456.789
LEGAL
LEGAL
ILLEGAL

Код

Решение

Для решения задачи нам понадобится функция idigit() проверки того, является ли символ цифрой. В STL существует одноименная функция, которая выполняет ту же самую задачу, однако для практики, я написал свою. В функции анализа вещественных чисел isreal() нужно указать условия, при которых синтаксис будет нарушен. Т.е. не будут выполнены условия, описанные в задаче. Затем, если в символьном массиве не было замечено ошибок — возвратить trueв основную функцию. Важно то, что в числе не должно по условию быть других символов кроме «e», «E», «.», «+», «-» и цифр. Что касается окаймляющих пробелов, то при вводе строки через cin они игнорируются.

Ссылки

Условие задачи на e-olymp
Код программы на ideone.com
Засчитанное решение на e-olymp

e-olymp 6387. Острова в потоке данных

Задача

Задана последовательность целых чисел $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$. Островом в последовательности называется набор последовательно идущих чисел, каждый из которых больше элементов, находящихся перед и после самой подпоследовательности. В приведенных ниже примерах каждый остров в последовательности обозначен внизу скобкой. Скобка острова, который находится в другом острове, находится под соответствующей скобкой.

prb6387

Напишите программу, на вход которой поступает последовательность из $15$ неотрицательных целых чисел, где каждое число отличается от предыдущего не более чем на $1$, и выводит количество островов в последовательности.

Входные данные

Первая строка содержит количество тестов $p \ (1 \leqslant p \leqslant 1000)$.

Каждый тест состоит из одной строки. Она содержит номер теста $k$, за которым следует $15$ неотрицательных целых чисел, разделенных пробелом. Первое и последнее число последовательности равны $0$. Каждое число отличается от предыдущего не более чем на $1$.

Выходные данные

Для каждого теста вывести в отдельной строке его номер $k$, пробел, и количество островов в последовательности.

Тесты

Входные данные Выходные данные
1 4
1 0 0 1 1 2 2 1 1 0 1 2 2 1 1 0
2 0 1 2 3 4 3 2 1 2 3 4 3 2 1 0
3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
4 0 1 2 3 4 5 6 7 6 5 4 3 2 1 0
1 4
2 7
3 7
4 7
2 3
1 0 1 2 3 2 1 0 1 2 3 4 3 2 1 0
2 0 0 1 2 2 2 1 1 1 0 0 1 1 0 0
3 0 1 1 1 2 2 2 2 3 4 3 2 2 1 0
1 7
2 3
3 4
3 6
1 0 1 2 2 2 3 4 5 6 5 4 3 2 1 0
2 0 1 0 0 0 0 1 1 1 0 1 2 1 1 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 1 2 3 4 5 6 7 6 5 4 3 2 1 0
5 0 1 0 1 2 1 0 1 2 2 2 1 0 0 0
6 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0
1 6
2 4
3 0
4 7
5 5
6 2

Код

Решение

Для решения задачи следует выявить закономерность образования острова в последовательности. Рассмотрим подробно.
Начнем с набора наибольших чисел в последовательности. С двух сторон от него идут числа, меньшие на $1$, которые образуют между собой уже другой остров. И так пока по краям не будут нули. Соответственно, чтобы узнать количество островов в последовательности, необходимо посчитать сколько раз элемент последовательности (подпоследовательности) больше предыдущего.

Ссылки

e-olymp 798. Платформы

Условие

В старых играх можно столкнуться с такой ситуацией. Герой прыгает по платформам, висящим в воздухе. Он должен перебраться от одного края экрана до другого. При прыжке с платформы на соседнюю у героя уходит $|y_{2} — y_{1}|$ энергии, где $y_{1}$ и $y_{2}$ — высоты, на которых расположены эти платформы. Кроме того, есть суперприём, позволяющий перескочить через платформу, но на это затрачивается $3\cdot\left|y_{2} — y_{1}\right|$ энергии.

Известны высоты платформ в порядке от левого края до правого. Найдите минимальное количество энергии, достаточное, чтобы добраться с $1$-ой платформы до $n$-ой (последней) и список (последовательность) платформ, по которым нужно пройти.

Входные данные

Первая строка содержит количество платформ $n  (2 \leqslant n \leqslant 100000)$, вторая $n$ целых чисел, значения которых не превышают по модулю $400$ — высоты платформ.

Выходные данные

В первой строке выведите минимальное количество энергии. Во второй — количество платформ, по которым нужно пройти, а в третьей выведите список этих платформ.

Тесты

Ввод Вывод
1 4
1 2 3 30
29
4
1 2 3 4
2 2
7 23
16
2
1 2
3 5
0 1 0 1 0
0
3
1 3 5

Код

Решение

Для решения данной задачи используем несколько массивов для хранения значений затраченной энергии и подсчета платформ. Начнём с энергии. По условию у нас есть два приема для прыжка с одной платформы на другую:

  1. Прыжок с платформы на соседнюю. Затрачивается $|y_{2} — y_{1}|$ энергии. В дальнейшем для упрощения этот вид прыжка будет называться «обычным».
  2. Суперприём — прыжок, позволяющий перескочить через платформу. В этом случае затрачивается $3·|y_{2} — y_{1}|$ энергии. Далее по тексту этот прием будет называться «суперпрыжок».

Нам необходимо проверить какой прием эффективнее. Для этого мы сравниваем сумму затраченной энергии при «обычных» прыжках с первой платформы до третей, с энергией, затраченной при «суперпрыжке» с первой сразу на третью. Этот алгоритм мы рассматриваем для каждой платформы, начиная с $3$ и до последней. Последнее значение, которое мы получим в ходе применения наиболее выгодного приема, и будет являться минимальным количеством энергии.

Параллельно подсчету энергии необходимо нумеровать платформы, на которые мы прыгнули. Опять же, если «суперпрыжок» с первой на третью оказался выгоднее, чем «обычные» прыжки с первой до третей, то третья платформа окажется второй по счету, на которую мы прыгнули. Продолжая эти рассуждения мы подсчитываем нужные нам платформы.

Чтобы вывести список платформ, по которым мы прошли, мы записываем в новый массив номера платформ начиная с последнего значения массива platforms[amount_of_pltf]. Там же, с помощью счетчика считаем общее количество платформ.

Ссылки

e-olymp 1966. Большой плюс

Условие

На сайте в таблице результатов соревнований, проводимых по правилам ACM (Association for Computing Machinery), верно решённая задачка оценивается плюсом. Но он какой-то маленький. Выведите большой плюс из звёздочек.

Входные данные

Целое число [latex]n[/latex] ([latex]1 \leqslant n \leqslant 100[/latex]).

Выходные данные

Выведите соответствующий большой квадратный «плюс» из точек и звёздочек — см. примеры входных и выходных данных.

Ввод Вывод
1 1
2 2

Решение

Задача задана немного нетривиально: не указано, каким образом число [latex]n[/latex] должно влиять на выходные данные. Однако по приведённым в условии примерам легко понять, что [latex]2n+1[/latex] — это ширина и высота плюса из звёздочек.

Печатать будем по строкам, для этого создадим главный цикл. Существует два случая: когда нужно вывести полную строку звёздочек (если [latex]u=n[/latex], то есть мы находимся в середине плюса) и когда нужно вывести обычную строку, состоящую из [latex]2n[/latex] точек и звёздочки посередине. В первом случае распечатываем [latex]2n+1[/latex] звёздочек. Во втором с помощью условия в цикле выводим звёздочку, если [latex]i=n[/latex] (центр строки), при других [latex]i[/latex] точки.

Тесты

Ввод Вывод
1 4
2 6

Код программы

e-olimp 1658. Факториал

Задача

Вычислите факториал числа.

Входные данные

Одно целое число [latex]n[/latex] ([latex] 0 \leqslant n \leqslant 20[/latex]).

Выходные данные

Выведите значение [latex]n! = 1 · 2 · 3 · … · n.[/latex]

Тесты

Входные данные Выходные данные
3 6
0 1
20 2432902008176640000

Код № 1

Решение № 1

Факториал натурального числа [latex]n[/latex] определяется как произведение всех натуральных чисел от [latex]1[/latex] до [latex]n[/latex] включительно.

Код № 2

Решение № 2

Также факториал числа можно найти при помощи рекурсивной функции (функции, которая вызывает сама себя).

Ссылки

Условие задачи на E-Olymp
Код задачи № 1 на Ideone
Код задачи № 2 на Ideone

e-olymp 8688. Количество чисел без 8

Задача

Напишите программу, которая определяет количество чисел от $1$ до $n$, в записи которых нет цифры $8$.

Входные данные:
В первой строке задано число $n$ $(1 \le n \le 10^{18})$.

Выходные данные:
Выведите одно число — количество чисел от $1$ до $n$, в записи которых нет цифры $8$.

Тесты

Входные данные Вывод программы
10 9
25833798135522720 4918510377816614
88888888888888 20334926626631

Continue reading

e-olymp 8701. Кузнечик-попрыгунчик

Задача

Кузнечик-попрыгунчик долго сидел на отметке [latex]0[/latex] числовой прямой, так долго, что придумал инновационную методологию своего перемещения. Такую, что за каждую итерацию движения он выполняет ровно два прыжка, перемещаясь сначала на [latex]a[/latex], а затем на [latex]b[/latex] единичных отрезков по числовой прямой, причем, если число положительное, то он движется вправо, а если отрицательное, то влево. Продолжительность прыжка в секундах равна соответствующему количеству единичных отрезков, на которое переместится кузнечик.

Например, если [latex]a = 3[/latex], а [latex]b = — 2[/latex], то через [latex]3[/latex] сек. он будет на отметке [latex]3[/latex], а через [latex]5[/latex] сек. от начала движения попадет на отметку [latex]1[/latex]. Далее, на [latex]8[/latex] секунде переместится на отметку [latex]4[/latex], а на [latex]10[/latex] секунде вернется на [latex]2[/latex].

При заданных [latex]a[/latex] и [latex]b[/latex] найти сколько необходимо времени в секундах, чтобы допрыгать до отметки x числовой прямой или вывести [latex]-1[/latex], если это невозможно.

Входные данные

Целочисленные значения [latex]a[/latex], [latex]b[/latex], [latex]x[/latex] — в одной строке через пробел. Значение по модулю не превышают [latex]10^{9}[/latex].

Выходные данные

Ответ на задачу.

Тесты

# ВХОДНЫЕ ДАННЫЕ ВЫХОДНЫЕ ДАННЫЕ
1 3 -2 1 5
2 100 200 0 0
3 -10 -20 -900 900
4 5 -6 3 27
5 1 3 10 -1

Код программы (с использованием условных операторов)

Решение задачи (с использованием условных операторов)

Для решения данной задачи сначала проверим не находимся ли мы уже в точке [latex]0[/latex], после проверим не равна ли сумма дистанций прыжков [latex]0[/latex], если равна, то также проверим можно ли добраться до точки x за один прыжок a. Если возможно выводим a. После проверяем возможность добраться до точки x двумя способами:

  1. Сначала добравшись до точки x-a прыжками вида a+b, а после совершив один прыжок на дистанцию a
  2. Добраться до точки x исключительно прыжками вида a+b

Если одним из способов невозможно добраться, то присваиваем переменной соответствующей потраченному времени MAX, а после выводим минимум из переменных possible_ans1, possible_ans2(в случае, если обеими способами невозможно добраться, т.е. обе переменные равны MAX выводим -1).

Код программы (без использования условных операторов)

Решение задачи (без использования условных операторов)

Заранее вычислим значения s(пройденное расстояние за один прыжок вида a+b) и t(время, потраченное на один прыжок вида a+b). После поочередно проверим выполнение всех условий, описанных ранее. При выполнении какого-либо из условий, выводим соответствующее время, если ни одно из условий не выполнилось то выводим [latex]-1[/latex].

e-olymp 497. Лентяй

Задача

Студент Валера являет собой классический пример лентяя. На занятия он практически не ходит, и только в конце семестра появляется в университете и сдает ”хвосты”. Его заветная мечта: найти такой день, когда можно будет сдать сразу все долги. У него есть расписание работы преподавателей, из которого точно известно, с какого и по какой день месяца каждый преподаватель ежедневно будет доступен. Помогите Валере написать программу, которая по расписанию будет определять, сможет ли Валера сдать все долги за один день или нет.

Входные данные:
Первая строка содержит количество тестов. Каждый тест состоит из количество предметов $n$ $(1 \le n \le 100)$, которые нужно сдать Валере. Далее идет $n$ строк, каждая из которых состоит из двух чисел $a$ и $b$ $(1 \le a \le b \le 31)$, задающих интервал работы очередного преподавателя.

Выходные данные:
Для каждого теста вывести в отдельной строке "YES" если возможно встретить всех преподавателей за один день, или "NO", если это невозможно.

Тесты

Входные данные Вывод программы
2
1
1 2
2
1 2
3 4
YES
NO
1
1
5 6
YES
2
2
1 4
7 9
3
1 30
2 5
5 10
NO
YES

Continue reading

e-olymp 2322. Столбцы

Столбцы

Дана таблица [latex]n × n[/latex], заполненная целыми числами. Петр Первый считает столбец хорошим, если тот содержит число [latex]x[/latex]. Требуется для каждого столбца выяснить, является ли тот хорошим.

Входные данные

В первой строке задано число [latex]x[/latex], не превышающее по модулю 2 [latex]\cdot[/latex] 109. Во второй строке задано число [latex]n \left(1 \leqslant n \leqslant 100\right)[/latex]. Каждая из следующих [latex]n[/latex] строк содержит [latex]n[/latex] целых чисел, не превышающих по модулю 2 [latex]\cdot[/latex] 109 — числа в ячейках таблицы.

Выходные данные

Для каждого столбца в отдельной строке выведите YES, если в нем есть число [latex]x[/latex], и NO в противном случае.

Тесты

# ВХОДНЫЕ ДАННЫЕ ВЫХОДНЫЕ ДАННЫЕ
1 1
2
0 1
0 0
NO
YES
2 23
3
23 0 23
21 12 23
11 13 23
YES
NO
YES
3 7
1
0
NO
4 13
3
13 33 75
23 45 31
13 13 13
YES
YES
YES

Код

Решение

Для решения этой задачи заведём массив на [latex]n[/latex] элементов, в котором каждый элемент будет счётчиком соответствующего столбца. В цикле будем смотреть все элементы и, если нам встретится элемент [latex]x[/latex], увеличим соответствующий счётчик. Затем в другом цикле смотрим счётчик каждого столбца, если он больше нуля, то выводим YES, иначе — NO.

Запустить код (ideone) можно здесь
Задача на E-olymp

Коды Грея

Задача

Frank Gray (13 September 1887 – 23 May 1969) was a physicist and researcher at Bell Labs who made numerous innovations in television, both mechanical and electronic

Frank Gray (13 September 1887 – 23 May 1969) was a physicist and researcher at Bell Labs who made numerous innovations in television, both mechanical and electronic

Коды Грея получили своё название по имени Франка Грея (Frank Gray), физика из Bell Telephone Laboratories, который в 1930-х годах изобрёл метод, в настоящее время используемый для передачи цветного телевизионного сигнала, совместно с существующими методами передачи и получения чёрно-белого сигнала; т.е. при получении цветного сигнала чёрно-белым приёмником изображение выводится оттенками серого цвета.
Хотя существует множество различных вариантов кодов Грея, рассмотрим только один: «двоичный отражённый (рефлексный) код Грея». Именно этот код обычно имеется в виду, когда говорят о неконкретном «коде Грея».
Отображённый двоичный код Грея строится следующим образом. Начинаем со строк [latex]0[/latex] и [latex]1[/latex], которые представляют соответственно целые числа [latex]0[/latex] и [latex]1[/latex].
[latex]0[/latex]
[latex]1[/latex]
Возьмём отражение этих строк относительно горизонтальной оси после приведённого списка и поместим [latex]1[/latex] слева от новых записей списка, а слева от уже имевшихся разместим [latex]0[/latex].
[latex]00[/latex]
[latex]01[/latex]
[latex]11[/latex]
[latex]10[/latex]
Таким образом получен отражённый код Грея для [latex]n = 2[/latex]. Чтобы получить код для [latex]n = 3[/latex], повторим описанную процедуру и получим:
[latex]000[/latex]
[latex]001[/latex]
[latex]011[/latex]
[latex]010[/latex]
[latex]110[/latex]
[latex]111[/latex]
[latex]101[/latex]
[latex]100[/latex]
При таком способе построения легко увидеть по индукции по [latex]n[/latex], что, во-первых, каждая из [latex]2n[/latex] комбинаций битов появляется в списке, причём только один раз; во-вторых, при переходе от одного элемента списка к рядом стоящему изменяется только один бит; в-третьих, только один бит изменяется при переходе от последнего элемента списка к первому. Коды Грея, обладающие последним свойством называются циклическими, и отражённый код Грея обязательно является таковым.
Для каждого заданного числа [latex]k[/latex] вывести десятичное значение [latex]k[/latex]-го кода Грея.

Входные данные

Во входном файле содержится некоторый набор тестовых данных, каждое число [latex]k[/latex] ([latex]0 ≤ k ≤ 10^{18}[/latex]) в наборе задано в отдельной строке. Количество наборов данных в одном тесте не превышает [latex]10^5[/latex].

Выходные данные

Для каждого заданного числа [latex]k[/latex] вывести в отдельной строке десятичное значение [latex]k[/latex]-го кода Грея.

Тесты

Входные данные Выходные данные
1 3 2
14 9
5 7
12 10
2 0 0
72 108
265 397
4781 7163
50642 42811
3 1010234 581415
96721758 119682801
640214927 893162568
2456987013 3679188807
51027963402 60418988303
1000000000000000000 797398725282889728

Код программы

Решение задачи

Объявляем переменную [latex]k[/latex] ([latex]0 ≤ k ≤ 10^{18}[/latex]) типа unsigned long int для считывания чисел из входного потока. Цикл while работает столько раз, сколько чисел во входном потоке (по условию задачи их количество [latex]\le 10^5[/latex]). В цикле вычисляется Код Грея числа [latex]k[/latex] путем побитовой операции «исключающее ИЛИ», применимого к [latex]k[/latex] и к результату побитового сдвига [latex]k[/latex] на [latex]1[/latex] бит вправо ([latex]k \gg 1[/latex]).
Ссылка на алгоритм ниже.

Ссылки

Code Gray: theory
e-olymp
ideone

e-olymp 75. Пираты и монеты

Задача

[latex]n[/latex] пиратам удалось справедливо разделить клад из [latex]m[/latex] золотых монет — каждый получил свою часть согласно своему пиратскому рангу и стажу. Самый молодой пират взял [latex]a[/latex] монет, а каждый следующий пират брал на одну монету больше, чем предыдущий его коллега. Последним был капитан, которому досталось вдвое больше от запланированного, очевидно, что после него монет больше не осталось.

Сколько было пиратов вместе с капитаном, если известны [latex]a[/latex] и [latex]m[/latex]. Так как капитан без команды просто пират, то [latex]n > 1[/latex].

Входные данные

Два натуральных числа [latex]a[/latex] и [latex]m[/latex] ([latex]1 \leq a \leq 100, m < 15150[/latex]). Входные данные корректны.

Выходные данные

Количество пиратов [latex]n[/latex].

Тесты

 #  ВХОДНЫЕ ДАННЫЕ  ВЫХОДНЫЕ ДАННЫЕ
 1  5 25  3
 2  3 24  4
 3  4 38  5
 4  5 55  6
 5  6 75  7

Код программы

Решение задачи

Для решения задачи воспользуемся формулой арифметической прогрессии, которая в данном случае равна: [latex](2a + n — 1)\frac{n}{2} + a + n — 1[/latex]. Отсюда получаем квадратное уравнение : [latex]\frac{n^{2}}{2} + n(a + \frac{1}{2}) + a — 1 = m[/latex], упростим и получим: [latex]n^{2} + 2an + n + 2a — 2 = 2m[/latex]. В коде задаем чему равно [latex]b[/latex], [latex]c[/latex] и [latex]d[/latex]. Где [latex]b[/latex] и [latex]c[/latex] — коэффициенты квадратного уравнения, а [latex]d[/latex] — дискриминант квадратного уравнения, который вычисляем по формуле: [latex]b^{2} — 4c[/latex]. Они нужны для нахождения корня данного квадратного уравнения. При этом ответом на задачу будет только один корень квадратного уравнения, так как количество пиратов не может принимать отрицательное значение. Поэтому вычисляем корень квадратного уравнения по формуле: [latex]\frac{-b + \sqrt{b}}{2}[/latex], тем самым получаем ответ на нашу задачу.

Код программы (с циклом)

Решение задачи

В данном способе используем цикл. Как он работает: в условии цикла задаем проверку, когда наступит очередь капитана и будет выполнятся равенство вида [latex]m — 2a = 0[/latex] цикл прекратит свою работу. Пока это равенство не будет выполнятся цикл будет выполнять работу арифметической прогрессии, постоянно увеличивая количество монет [latex]a[/latex] на каждого пирата при этом, вычитая каждый раз из общего клада [latex]m[/latex], также, пока не выполняется данное равенство, считаем количество пиратов [latex]n[/latex], путем прибавления [latex]n + 1[/latex], пока работает цикл. И когда цикл прекращает свою работу, в конце учитываем капитана и к полученному количеству пиратов [latex]n[/latex] прибавляем [latex]n + 1[/latex]. И получаем ответ на нашу задачу.

Код программы (с условным оператором)

Решение задачи

В данном способе воспользуемся рекурсивной функцией и условными операторами. Как это работает: внутри рекурсивной функции расписываем условные операторы, которые определяют равенством [latex]m — 2a = 0[/latex] — когда наступила очередь капитана, а пока это условие не выполняется, функция будет вызывать сама себя пока это условие не удовлетворится, функция каждый раз вызывается с новыми параметрами соответственно. Где [latex]a[/latex] — количество монет даваемое пиратам, увеличивается по рангу каждого пирата, [latex]m[/latex] — клад, от него отнимаем текущее [latex]a[/latex], и [latex]n[/latex] — количество пиратов, считаем пиратов. И в конце выводит количество пиратов. Задача решена.

Ссылки